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Continued	advancement	of	sensors	has	led	to	an	ever-increasing	amount	of	data	of	various	physical	nature	to	be	acquired	from	production	lines.	
As	rich	information	relevant	to	the	machines	and	processes	are	embedded	within	these	“big	data”,	how	to	effectively	and	efficiently	discover	
patterns	in	the	big	data	to	enhance	productivity	and	economy	has	become	both	a	challenge	and	an	opportunity.	This	paper	discusses	essential	
elements	of	and	promising	solutions	enabled	by	data	science	that	are	critical	to	processing	data	of	high	volume,	velocity,	variety,	and	low	veracity,	
towards	the	creation	of	added-value	in	smart	factories	of	the	future.		
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1.	Introduction		

The	first	modern	use	of	the	word	“data”	refers	to	"transmissible	
and	storable	computer	information"	[161].	As	data	have	gradually		
permeated	 throughout	 all	 aspects	 of	 the	 modern	 society,	 the	
meaning	 of	 the	 word	 has	 evolved	 to	 “information	 output	 by	 a	
sensing	device	or	organ	that	includes	both	useful	and	irrelevant	or	
redundant	information	and	must	be	processed	to	be	meaningful”	
[139].	This	 shift	 reflects	how	data	has	been	 transformed	 from	a	
passive	information	carrier	to	an	active	value	enabler.	
	

1.1.	From	data	to	big	data	
	
The	 proliferation	 of	 computers,	 Internet,	 sensors,	 mobile	

devices,	 and	 smartphones	 has	 fundamentally	 changed	 the	 way	
data	are	generated,	collected,	transmitted,	and	stored.	In	terms	of	
data	 volume,	 approximately	 3	 Exabytes	 (3x1018	 bytes)	 of	 data	
existed	globally	 in	1986,	whereas	by	2011	over	300	Exabytes	of	
data	were	stored	[82].	The	pace	of	data	generation	and	collection	
has	been	accelerating	drastically	especially	in	the	last	decade	[18,	
82].	Data	are	not	just	“big”	in	terms	of	volume	and	the	rate	at	which	
they	are	collected	and	stored,	but	have	also	become	“big”	in	terms	
of	 their	 diversity	 and	 richness,	 enabling	 a	more	 comprehensive	
and	 descriptive	 digital	 reflection	 of	 the	 physical	world	 that	 can	
generate	significant	value	to	support	policy	making	[44].	
The	term	“big	data”	generally	describes	data	that	may	be	of	high	

volume	 or	 variety	 or	 that	may	 be	 collected	 at	 high	 velocity	with	
potentially	 high	 or	 low	 veracity	 such	 that	 increasingly	 specific	
analytical	 technologies	 are	 needed	 to	 transform	 it	 into	 valuable	
information	 [36,	136].	 For	 example,	 one	 challenge	of	big	data	 is	
that	a	traditional	centralized	data	storage	approach	may	no	longer	
satisfy	the	significant	increase	in	data	volume,	which	can	create	an	
urgent	 need	 for	 distributed	 data	 handling,	 storage,	 and	
management	 techniques.	 Similarly,	 the	 increased	 rate	 of	 data	
generation	 continuously	 challenges	data	 transmission	 standards	
and	 techniques,	making	 it	difficult	 to	 leverage	collected	data	 for	
timely	decision	making.	Furthermore,	collected	data	have	become	
increasingly	 diverse,	 including	 structured	 (e.g.,	 data	 recoded	 in	

spreadsheet),	 semi-structured	 (e.g.,,	 data	 recorded	 in	 markup	
languages	 such	 as	 extensible	 markup	 language,	 or	 XML)	 and	
unstructured	(e.g.	text,	audio,	image,	and	video)	data.	Processing	
these	forms	of	data	requires	specific	techniques	to	be	effective	and	
efficient,	which	refers	to	how	well	the	outcome	of	the	performed	
data	 processing	 task	 meets	 the	 expectation,	 and	 if	 the	 time	 or	
computational	 load	 expended	 to	 perform	 the	 task	 is	 optimized,	
respectively.	 Finally,	 distinguishing	 between	 reliable	 and	
unreliable	data	has	become	more	difficult	due	to	the	lack	of	tools	
to	quantify	the	uncertainty	involved	[95].		
Despite	these	challenges,	the	rich	information	embedded	in	data	

has	led	to	the	proclamation	that	data	is	the	most	valuable	resource	
of	the	world	today	[44].	Effective	extraction	and	use	of	data	have	
become	the	next	frontier	to	drive	innovation,	competitiveness,	and	
economic	 growth	 in	 many	 industries	 including	 retail,	 finance,	
healthcare,	 transportation,	and	manufacturing	[136].	 Indeed,	the	
advancement	 of	 computational	 infrastructure	 and	 innovation	 in	
data	analysis	techniques	has	allowed	industry	to	begin	to	harness	
the	insight	embedded	in	big	data	to	improve	value	creation	[82].		
	

1.2.	Data	as	a	co-product	of	manufacturing	
	
When	data	were	manually	recorded,	the	amount	of	data	was	low,	

the	quality	was	inconsistent,	and	the	associated	value	was	little	to	
support	 improvement	of	 the	manufacturing	processes	 [41,	145].	
As	 digital	 sensors	 have	 increasingly	 replaced	 manual	 data	
recording,	and	sensor-rich	machines	become	commonplace	on	the	
factory	floors,	the	availability	of	large	amount	of	high-quality,	high-
value	data	has	fundamentally	shifted	the	role	of	data,	making	it	an	
insepareable	co-product	of	modern	manufacturing	(Fig.	1).	
The	 1st	 industrial	 revolution	 greatly	 expanded	 production	

capability	due	 to	 the	 emergence	of	 the	 steam	engine,	 but	 it	 had	
little	 impact	 on	 data	 collection	 and	 use.	 With	 the	 increasing	
demands	 for	mass	 production,	 the	 2nd	 industrial	 revolution	 has	
highlighted	the	need	for	controlling	production	quality	[86].	As	a	
result,	 quality	 variables	 associated	with	 production	 began	 to	 be	
measured,	and	scientific	methods	were	developed	to	process	the	
collected	data	[144].	Monitoring	charts	were	introduced	to	track	
quality	variables	for	defect	detection,	representing	the	beginning	
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of	 statistical	 process	 monitoring	 (SPM)	 [73,	 114].	 Fundamental	
work	on	topics	such	as	design	of	experiments	(DoE)	and	response	
surface	 methodology	 (RSM)	 were	 conducted	 to	 systematically	
investigate	the	causal	relationship	between	variations	in	process	
parameters	and	the	conformance	to	product	quality	for	improved	
process	control	and	optimization	[144].	These	techniques	assume	
that	the	collected	data	are	samples	generated	from	models	that	can	
provide	insight	to	process	status	and	product	quality	(e.g.,	whether	
a	process	parameter	has	significant	influence	on	quality)	[19,	144].	
These	 methods	 have	 contributed	 significantly	 to	 reducing	
variability	and	improving	quality	and	have	revealed	an	increasing	
awareness	of	the	purpose	and	value	of	data	[144].	As	explained	by	
W.	 Edwards	 Deming,	 “the	 ultimate	 purpose	 of	 taking	 data	 is	 to	
provide	a	basis	or	a	recommendation	for	action”	[37].		
The	3rd	 industrial	 revolution	witnessed	 the	 shift	 from	manual	

production	 to	 digital	 technology-enabled	 automation	 with	 the	
adoption	 and	 proliferation	 of	 computers	 and	 sensors.	 A	 great	
variety	of	sensors	and	machine	controllers	have	been	deployed	for	
process	 monitoring	 and	 fault	 detection	 [105,	 111,	 207].	
Information	systems	(e.g.,	enterprise	resource	planning,	or	ERP)	
started	to	be	deployed	to	facilitate	the	management	of	production	
information	 (e.g.,	 orders,	 materials	 supply,	 and	 production	
capacity).	Enabled	by	numerical	simulations	(e.g.,	computer-aided	
design,	or	CAD,	and	finite	element	analysis,	or	FEA),	manufacturing	
processes	were	decomposed	into	specific	steps	and	reconstructed	
as	 virtual	 models	 for	 analysis,	 verification,	 and	 improvement	
[180].	 As	 a	 result,	 the	 diversity	 of	 data	 in	 manufacturing	 has	
expanded	from	single	measurements	of	quality	to	a	mixture	of	data	
from	 transactions,	 simulations,	 scheduling,	 production,	 and	
maintenance	each	of	which	offers	enormous	potential	as	sources	
of	new	knowledge	generation.		
The		accelerated	availability	of	a	large	amount	of	data	has	led	to	

questions	about	how	to	make	effective	use	of	data,	as	it	has	became	
obvious	 that	 statistical	 models	 are	 increasingly	 limited	 by	 the	
complexity	 of	 and	 uncertainty	 associated	with	 data	 to	 gain	 real	
insight	 [73].	 In	 addition,	 traditional	 analysis	 tools	 have	 been	
limited	to	a	small	selection	of	models	and	methods	that	have	been	
unable	to	tackle	the	heterogeneity	of	manufacturing	tasks	that	are	
increasingly	distributed	across	different	levels	of	a	manufacturing	
system	 including	 system-,	 machine/process-	 and	 material-level	
[19].	Driven	by	the	need	for	data	mining	to	discover	information	
underlying	 production	 systems	 for	 purpose	 of	 operation	
monitoring,	 fault	 diagnosis,	 and	 performance	 prognosis,	 data-
driven	 techniques	 such	 as	 machine	 learning	 (ML)	 have	 been	
investigated,	starting	in	the	1960's,	to	complement	physics-based	
analysis	 and	 numerical	 simulations	 [90,	 168].	 These	 techniques	
can	 inductively	 learn	relevant	patterns	 from	the	data	processed,	
and	relate	them	to	product	quality	in	the	form	of	quality	prediction.	

Effective	 applications	 of	ML	 techniques	 such	 as	 artificial	 neural	
networks	 (ANNs),	 random	 forest	 (RF),	 and	 support	 vector	
machines	(SVM)	have	been	reported	in	numerous	manufacturing	
applications	[67,	71,	121,	183].	The	ever	increasing	availability	of	
manufacturing	related	data	has	made	the	need	for	improving	data	
quality	more	critical.	As	data	grow	in	terms	of	volume,	velocity	and	
variety,	 data	 quality	 or	 veracity,	 such	 as	 erroneous,	missing,	 or	
contradictory	 data,	 	 uncertainty,	 and	 information	 redundancy,	
have	 taken	 on	 increased	 significance.	 Developing	 proper	
techniques	 to	mitigate	data	quality	 issues	have	become	a	major	
focus	for	reliable	big	data	analytics	[25].	
As	 the	 need	 for	 quality,	 flexibility,	 and	 efficiency	 in	

manufacturing	continue	to	grow	and	new	paradigms	such	as		mass	
personalization	 emerge	 [86],	 a	 deeper	 understanding	 of	
production	 machines	 and	 process	 as	 part	 of	 the	 cyber-physical	
systems	 (CPS)	 paradigm	 has	 become	 a	 central	 topic	 of	 the	 4th	
industrial	 revolution	 (Fig.	 1).	 CPS	 refers	 to	 “physical	 and	
engineered	systems	whose	operations	are	monitored,	controlled,	
coordinated	 and	 integrated	 by	 a	 computing	 and	 communicating	
core”	 [143].	 This	 definition	 provides	 the	 vision	 for	 the	 “smart	
factories	 of	 the	 future”,	 which	 are	 characterized	 by	 the	 timely	
acquisition,	 distribution,	 and	 utilization	 of	 information	 from	
machines	and	processes	on	manufacturing	shop	floors	where	big	
data	analytics	will	play	a	critical	role	in	dynamically	linking	all	the	
operations	within	the	factories	and	retrieving	knowledge	from	the	
data	 to	 enable	 in-situ	 monitoring,	 operation	 optimization,	
informed	decision-making	and	adaptive	control,	with	humans	 in	
the	center	of	the	loop.	More	events	on	the	physical	shop	floor	are	
being	recorded,	communicated,	analysed,	and	used	for	continuous	
improvement	 enabled	 by	 sensing,	 connectivity,	 computing,	 and	
learning	techniques	[190].	Factory	floors	have	evolved	into	fully-
connected,	digitalized,	and	intelligent	data	acquisition	platforms.	
The	 digital	 transformation	 of	 manufacturing	 has	 drastically	

expanded	the	horizon	of	data	generation	 throughout	production	
and	has	provided	unprecedented	data	 availability	 and	diversity.	
Although	such	trends	have	been	observed	since	the	beginning	of	
the	 3rd	 industrial	 revolution,	 recent	 progress	 across	 several	
technological	frontiers	suggests	that	the	4th	industrial	revolution	is	
different	because	of:	

• The	development	of	sensors	and	the	maturation	of	wireless	
technologies	have	allowed	data	collection	and	communication	
unconstrained	 by	 limitations	 typically	 encountered	 in	
manufacturing	plants	[54];	

• Advancements	 in	computational	 infrastructure,	 represented	
by	cloud	and	edge	computing,	have	made	the	management	of	
big	 data	 feasible	 to	 support	 tasks	 of	 different	 temporal	
requirements,	from	process	control	that	requires	m-second-

Fig.	1.	Evolution	of	manufacturing	systems	and	data	as	co-product,	adapted	from	[56]	
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level	 response,	 to	 production	 scheduling	 that	 requires	
second-level	adjustment	[22,	188,	220];		

• Breakthrough	 technolgies,	 such	as	deep	 learning	 (DL),	have	
enabled	more	powerful	pattern	recognition	and	provide	the	
computational	backbone	for	learning	from	a	large	amount	of	
manufacturing	data	to	improve	decision	making	[117,	217];	

• Digital	twin	has	emerged	as	a	new	tool	that	can	optimize	and	
validate	process	control	in	the	data-constructed	virtual	space,	
leading	to	improvement	on	the	physical	shop	floor	[3,	202];	

• The	advent	of	distributed	manufacturing	and	Manufacturing-
as-a-Service	 (MaaS)	has	 transformed	 traditional	 centralized	
factories	 to	 more	 service-oriented	 and	 personalized	
manufacturing	resources	[115].	

This	 paper	 discusses	 the	 essential	 elements	 and	 promising	
solutions	 that	are	critical	 to	advanced	manufacturing	 in	 the	21st	
century,	which	explore	big	data	and	data	analytics	as	an	enabling	
tool,	 with	 a	 focus	 on	 the	 data	 generated	 by	 and	 collected	 from	
machines	and	processes	within	the	factory.	Data	associated	with	
the	business	and	supply	chain’s	aspects	are	considered	out	of	the	
scope	 of	 the	 paper,	 thus	 are	 not	 included	 in	 the	 discussion.	 As	
illustrated	 in	 Fig.	 2,	 the	 paper	 uses	 the	 data	 lifecycle	 from	 data	
generation	to	transmission,	processing,	storage,	and	learning	as	an	
underlying	structure	to	understand	how	to	build	smart	factories	of	
the	future.	 	Throughout	this	paper,	the	5Vs	that	characterize	the	
big	 data	 paradigm	 (i.e.,	 volume,	 velocity,	 variety,	 varacity,	 and	
value)	 are	 reflected	 in	 the	 discussion.	 Data	 security	 is	 also	
discussed,	 followed	 by	 the	 examples	 of	 successful	
implementations	with	industry.	Finally,	topics	for	future	research	
are	highlighted	to	summarize	this	paper.		
	

	
	

Fig.	2.	Schematic	relationship	among	key	elements	in	big	data	analytics	
and	smart	factories	

2.	Data	Collection		

The	 availability	 and	 accessibility	 of	 data	 across	 the	 entire	
spectrum	of	manufacturing	has	grown	at	an	unprecedented	rate.	
These	 data	 can	 be	 broadly	 classified	 to	 five	 categories:	 1)	
Management	data	from	information	systems,	such	as	those	related	
to	 production	 planning	 and	 inventory	 management;	 2)	 Process	
data	from	sensors,	e.g.,	on	real-time	machine	performance;	3)	User	
data	 from	 the	written	 logs	 and	 online	 behaviors	 related	 to	web	
browsing,	purchasing,	and	review	history;	4)	Product	data	from	its	

lifecycle	related	to	performance	and	the	context	of	use;	5)	Public	
data	from	regulatory	institutions	through	open	databases,	such	as	
regulations	and	industrial	standards	[201].	
Using	 this	 data	 presents	 challenges	 that	 are	 unique	 to	

manufacturing	 due	 to	 the	 large	 range	 of	 temporal	 scales	 over	
which	analysis	and	decision	making	must	occur,	as	shown	in	Fig.	3	
[215].	 Supporting	 such	 diverse	 temporal	 scales	 requires	
manufacturers	 to	 address	 traditional	 questions,	 such	 as	 which	
variable	 to	measure	 and	 how	 to	measure	 it,	 as	well	 as	 how	 the	
acquired	data	should	be	transmitted,	stored,	contextualized,	and	
computed	 to	 ensure	 that	 subsequent	 data	 analysis	 can	 be	
efficiently	 conduted	 in	 a	 timely	manner.	 The	 state-of-the-art	 for	
data	collection	is	summarized	in	Table	1.	
	

	
	

Fig.	3.	Temporal	decision	scale	in	manufacturing,	adapted	from	[215]	
	
2.1.	Acquisition	
	
The	Sensors	and	Sensor	Networks	program	of	 the	US	National	

Science	Foundation	described	the	convergence	of	the	Internet	and	
communication	and	information	technologies	with	techniques	for	
miniaturization	 as	 having	 “placed	 sensor	 technology	 at	 the	
threshold	 of	 a	 period	 of	 major	 growth”	 [158].	 The	 subsequent	
decade	has	witnessed	the	rapid	development	of	sensing	and	data	
acquisition	 technologies.	 Advances	 in	 sensor	 design	 and	
realization	 have	 created	 new	 ways	 for	 acquiring	 increasingly	
diverse	 and	 high	 quality	 data	 at	 high	 speed,	 which	 has	 greatly	
enhanced	the	observability	of	manufacturing	processes	[28].	
	
2.1.1.	Process-embedded	sensing	
	
While	 manufacturers	 have	 the	 domain	 knowledge	 needed	 to	

identify	 the	 desired	 process	 data	 to	 measure,	 the	 physical	
constaints	 and	 adverse	 operating	 conditions	 may	 limit	
measurement,	 and	 limited	 commercially	 available	 sensors	 often	
prevent	acquisition.	The	past	decade	has	witnessed	new,	process-
embedded	 sensing	 designs	 that	 have	 helped	 to	 overcome	 these	
limitations	and	have	enabled	 the	acquisition	of	 critical	variables	
[28,	49,	51,	101].	For	example,	Smolenicki	et	al.	described	a	spring-
loaded	pin	design	to	measure	the	interface	friction	coefficient	of	an	
orthogonal	 turning	 process	 at	 cutting	 speed	 up	 to	 300	 m/min	
[192].	 Groche	et	 al.	 developed	 a	 sensoric	 fastener	 for	 structural	

Table	1.	State-of-the-art	for	data	collection	
Big	data	V’s	 Data	acquisition	 Data	transmission	 Data	management	

Volume	 Process-embedded	sensing	design	[49,	
51,	61,	192]	 Compressive	sensing	[127,	130,	241]	

Distributed	storage:	NoSQL	database	
[21,	31,	85,	91,	105]	

Velocity	 High	speed	data	acquisition:	X-Ray	
imaging	[164,	175]	 Edge	computing	[125,	169]	

Variety	 Multi-variate	sensing	design	[101]	 Acoustic	wireless	transmission	[54]	 Semantic	indexing	[39,	103,	232]	

Veracity	 Trust-incorporated	sensing	network	[6]	 Redundancy	reduction	via	compressive	
sensing	[127,	130,	241]	 Data	cleansing	[135,	236]	
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joint	 load	 measurement	 in	 stamping	 processes	 by	 embedding	
strain	 gages	 inside	 the	 fastener	 and	 a	 thermocouple	 for	
temperature	 compensation	 [61].	 Fujishima	 et	 al.	 presented	 a	
capacitance-type	coolant	level	sensor	for	milling	processes	where	
the	coolant	level	corresponds	to	a	different	voltage	output	pattern	
of	nine	electrode	pairs	geometrically	spread	out	along	the	sensing	
probe	[51].	A	capacitive	pressure	sensor	was	reported	in	[49]	that	
measures	the	pressure	distribution	across	the	interface	between	
the	 rotating	 roll	 and	 metal	 foils,	 which	 enables	 online	 surface	
texture	quantification	during	the	microrolling	process.	Kazmer	et	
al.	 	 report	 on	 a	 multivariate	 sensor	 with	 acoustic	 wave-based	
wireless	 data	 transmission	 that	 enables	 the	 simultaneous	
measurement	 of	 temperature,	 pressure,	 melt	 flow	 velocity,	 and	
viscosity	 within	 the	 cavity	 of	 an	 injection	 mold	 using	 only	 one	
sensor	package	[101].		
Machines	 are	 also	 increasingly	 equipped	 with	 commercial	

sensors,	 and	 this	 trend	 has	 in	 turn	 driven	 interest	 in	 data	
acquisition	 systems	 capable	 of	managing	 big	 data.	 For	 example,	
Fujishima	 et	 al.	 describe	 a	 machining	 center	 equipped	 with	 24	
additional	 sensors	 beyond	 its	 base	 configuration	 [51],	 which	
include	 six	 accelerometers	 for	 spindle	 and	 table	 vibration	
measurement,	 two	 coolant	 level	 sensors,	 eight	 load	 cell	 sensors	
embedded	 in	 the	 adjustable	 legs,	 one	 current	 and	 one	 voltage	
sensor	to	measure	energy	consumption	of	the	entire	machine	tool,	
three	temperature	sensors	embedded	in	spindle	and	work	table	to	
compensate	 for	 thermal	 displacement,	 and	 three	 cutting	 force	
sensors.	As	a	result,	a	customized	platform	was	developed	(see	Fig.	
4)	with	interface	boards	to	allow	manufacturers	to	leverage	data	
acquired	in-situ	beyond	the	limitation	associated	with	the	PLC.	
	

	
	

Fig.	4.	Acquisition	and	storage	system	for	machining	center	[51]	
	

2.1.2.	From	time	series	to	image	data	
	
Data	generated	 from	manufacturing	processes	has	historically	

been	 limited	 to	 1-D	 time	 series	 data,	 such	 as	 vibration	 and	
pressure.	 These	 provide	 temporal	 information	 for	 monitoring	
processes,	such	as	metal	forming,	and	machine	components,	such	
as	 induction	 motors	 [28,	 129].	 In	 comparison,	 image	 data,	
including	2-D	images	and	3-D	videos,	provide	spatial	information	
that	 is	 desirable	 for	 many	 applications,	 such	 as	 surface	 quality	
inspection.	Images	can	also	be	captured	in	a	contactless	manner,	
which	makes	it	particularly	well	suited	for	operations	that	requires	
non-intrusive	 measurement.	 The	 effective	 use	 of	 image	 data,	
however,	 requires	 novel	 signal	 processing	 capability	 and	 high	
computational	power.	
Recent	 developments	 in	 signal	 processing	 and	 computational	

hardware,	 such	 as	 graphical	 processing	 units	 (GPUs),	 have	
significantly	reduced	time	required	to	process	 image	data	[117].	
This	 has	 led	 to	 the	 rapid	 increase	 of	 image	 acquisition	 across	
manufacturing.	Also,	emerging	manufacturing	technologies,	such	
as	additive	manufacturing	(AM),	have	motivated	the	development	
and	 maturation	 of	 image-based	 techniques,	 which	 has	 in	 turn	
improved	 these	 methods	 [47].	 In	 addition,	 novel	 applications	

enabled	by	image	data	have	emerged,	such	as	the	use	of	speckle	
photography	for	in-process	strain	measurement	at	the	machined	
boundary	zone	for	grinding	(Fig.	5)	[203].	Such	measurement	was	
not	 feasible	previously	due	 to	 the	harsh	process	 conditions	 that	
prevent	contact-based	sensing.	
	

	
	

Fig.	5.	Strain	measurement	during	grinding	by	speckle	photography,	
adapted	from	[203]	(CCD:	charge-coupled	device)	
	
2.1.3.	Towards	higher	acquisition	rates	
	
Technological	advances	have	also	enabled	the	measurement	of	

data	 at	 higher	 sampling	 rates	 than	 previously	 available.	 As	 an	
example,	high-speed	sensing	has	allowed	processes	to	be	probed	
with	unprecedented	temporal	resolution	[249].		
Another	example	is	online	AM	process	monitoring.	While	widely	

considered	as	an	indicator	of	process	condition	and	part	quality,	
in-process	characterization	of	melt	pool	remains	challenging	due	
to	 its	 transient	 nature	 that	 requires	 micro-second	 sensing	
capability	to	track	its	evolution	[47].	Such	high-frequency	sensing	
has	been	only	achieved	previously	by	temperature	(e.g.,	two-color	
pyrometer)	 and	 visible-light	 or	 thermal	 (e.g.	 infra-red	 light)	
imaging,	which	are	limited	to	surface	level	monitoring	[52].	More	
recently,	the	development	of	high-speed	X-ray	makes	it	possible	to	
capture	 the	 internal	 structure	 around	 the	 melt	 pool	 and	
consequently	 its	 full	 dynamics	 [249].	 The	 high-speed	 X-ray	
imagining	 system	 developed	 in	 [175]	 (see	 Fig.	 6)	 has	 achieved	
sampling	rate	of	50	kHz,	which	allows	the	melt	pool	surface	wave	
movement	 in	 Selective	 Laser	 Melting	 (SLM)	 process	 to	 be	
quantified	 for	 process	 improvement	 and	 numerical	 modeling.	
Similarly,	an	ultrafast	X-ray	imaging	system	is	described	in	[164],	
which	has	achieved	a	sampling	rate	of	6.5	MHz	to	capture	the	SLM	
phenomena	 such	 as	 vapor	 depression,	melt-pool	 dynamics,	 and	
powder-spatter	ejection.	
	

	
	

Fig.	6.	High-speed	X-ray	imaging	and	observed	remelting	process,	
adapted	from	[175]	
	
2.2.	Transmission	
	
High	 velocity	 data	 acquisition	 from	 a	 large	 number	 of	 data	

sources	 can	 create	 a	 heavy	 burden	 on	 data	 transmission	
infrastructure	 that	 can	 limit	 transmission	 bandwidth.	 Varying	
latency	 requirements	 for	 different	 data	 can	 create	 additional	
challenges.	 Data	 compression	 techniques	 can	 alleviate	 the	
bandwidth	 limitation	 in	 transmitting	 manufacturing	 data,	 and	
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techniques	such	as	edge	computing	complement	cloud	computing	
in	handling	data	with	varying	requirements	of	latency	[188].	
	
2.2.1.	Bandwidth	
	
Dictated	 by	 the	 Shannon-Nyquist	 sampling	 theorem,	 many	

process	variables	are	measured	at	high	acquisition	rate	in	order	to	
obtain	useful	information	[127].	For	example,	vibration	signals	in	
rotatry	 machines	 are	 commonly	 measured	 at	 the	 micro-second	
scale.	 The	 result	 is	 a	 potentially	 massive	 amount	 of	 data	 to	 be	
transmitted	at	high	velocity	and	severe	usage	of	bandwidth	[241].	
The	situation	is	further	exacerbated	by	the	addition	of	image	data.	
A	 technique	 that	 can	 potentially	 alleviate	 this	 issue	 is	

compressive	 sensing	 (CS).	 The	 CS	 theorem	 states	 that	 signal	
sparsity	can	be	exploited	through	numerical	optimization	to	allow	
signal	 recovery	 from	 far	 fewer	data	points	 than	required	by	 the	
Shannon-Nyquist	theorem	[27].	Much	effort	has	been	dedicated	to	
the	application	of	CS	 in	 reducing	 the	amount	of	data	needed	 for	
different	 types	 of	 analysis.	 For	 example,	 Liu	 et	 al.	 applied	 CS	 in	
reducing	 acoustic	 emission	 sensing	 data	 for	 bearing	 condition	
monitoring	[127].	As	shown	in		Fig.	7,	by	exploiting	the	sparsity	of	
signal	 in	 the	 frequency	 domain,	 condition-related	 frequency	
information	 can	 be	 recovered	 from	 the	 compressed	 signal	 that	
contains	only	1/8	of	the	original	data	volume.	In	a	similar	work,	
Yuan	 and	 Lu	 extended	 the	 CS-based	 method	 to	 bearing	 fault	
diagnosis	 under	 variable	 speeds	 [241].	 Lu	 and	 Wang	 studied	
physics-based	 CS	 to	 monitor	 the	 temperature	 field	 of	 AM	
processes.	They	have	shown	that	the	data	volume	and	number	of	
sensors	 needed	 for	 process	 monitoring	 can	 be	 significantly	
reduced	by	leveraging	prior	knowledge	of	the	physical	quantities	
to	be	measured.	A	compression	ratio	of	two	orders	of	magnitude	
has	been	achieved	as	compared	to	standard	CS	methods	[130].	
	

	
	

Fig.	7.	Signal	compression	and	recovery	based	on	CS,	adapted	from	[127]	
	
2.2.2.	Edge	computing	
	
Edge	computing	extends	cloud	computing	to	the	source	of	data	

to	address	the	need	for	time-sensitive	data	transmission.	It	helps	
to	reduce	 the	 latency	 in	 transmission	and	 free	up	bandwidth	by	
allowing	 data	 to	 be	 stored	 and	 computed	 locally	 [17,	 206,	 209,	
253].	 A	 system	 consisting	 of	 sensors	 with	 edge	 and	 cloud	
computing	(see	Fig.	8)	allows	data	transmission	and	subsequent	
storage	 and	 analysis	 to	 be	 adaptively	 allocated	 based	 on	 the	
requirement	of	each	task	with	time-tolerant	requests	that	do	not	
require	 real-time	 responses	 transmitted	 to	 the	 cloud.	 Cloud	
computing	 provides	 scalable	 data	 storage	 and	 computational	
capability	that	can	scale	up	to	computation-intensive	tasks,	such	as	
predictive	modeling.	In	comparison,	edge	computing	responds	to	
the	urgent	and	non-computationally	 intensive	tasks	triggered	by	
machines	 or	 sensors	 that	 cannot	 be	 delayed	 due	 to	 the	 latency	
involved	 in	 transmission	 to	 the	 cloud	 [214].	 Furthermore,	 edge	
computing	 leverages	 the	 spare	 capacity	 of	 locally	 available	
resources,	 such	 as	 narrow-band	 Internet	 of	 Things	 (NB-IoT),	 to	
achieve	further	reduced	latency	and	perform	computing	in	a	more	
cost-effective	manner	[32].	Advances	in	IoT	and	edge	computing	
have	provided	the	technological	foundation	for	transmiting	high-

speed,	 time-sensitive	 data	 and	 allow	 distributed	 manufacturing	
resources	to	be	effectively	integrated	[188].	
Qian	 et	 al.	 provided	 examples	 of	 edge	 computing	 in	

manufacturing	such	as	an	edge-based	motor	fault	diagnosis	sytem	
[169].	 The	 motor	 is	 monitored	 by	 three	 current	 probes	 and	 a	
vibration	sensor	each	sampling	at	20	kHz.	A	diagnostic	model	 is	
built	 offline	 and	 loaded	 to	 an	 edge	 device	 to	 monitor	 motor	
conditions	in	real-time	with	the	fault	detection	latency	being	0.25	
s.	Similarly,	Li	et	al.	reported	on	a	vision	system	for	assembly	line	
monitoring	where	images	captured	by	a	mobile	robot	are	analysed	
by	a	neural	network	 tranined	on	a	cloud	platform	and	stored	 in	
edge	 devices	 [125].	 To	 handle	 tasks	 that	 require	 more	
computational	capability,	a	cooperative	edge	computing	strategy	
is	developed	to	dynamically	allocate	multiple	devices	for	the	task.		
While	 edge	 computing	 has	 shown	 to	 improve	 the	 speed	 and	

efficiency	of	data	transmission	by	allowing	localized	data	analysis	
for	time-critical	decision-making,	it	comes	with	the	trade-off	that		
limits	 information	 associated	 with	 local	 data	 being	 propagated.		
This	 limitation	 can	 potentially	 impacts	 the	 degree	 of	 global	
optimality	 that	 can	 be	 achieved	 via	 edge	 computing.	 Effective		
analysis	fusion	strategy	across	different	edge	devices	remains	an	
open	research	topic,	which	aims	to	strike	a	balance	between	the	
speed	of	data	analytics	and	the	degree	of	optimality.	
	

	
	

Fig.	8.	Edge	devices,	edge	and	cloud	computing,	adapted	from	[30]	
	
2.3.	Data	Management	
	
The	 evolution	 of	 big	 data	 has	 presented	 challenges	 for	 data	

management	 since	 traditional	 data	 tools,	 procedures,	 and	
infrastructure	 have	 not	 been	 designed	 to	 manage	 data	 of	 high	
volume	and	variety,	especially	if	that	data	have	been	generated	in	
geographically	dispersed	silos	[26,	100,	167].	Such	complexity	has	
motivated	 big	 data	 management	 as	 a	 new	 discipline	 with	
techniques	 that	 have	 been	 developed	 to	 address	 the	 storage,	
contextualization,	 integration,	 and	 access	 of	 big	 data	 to	 support	
subsequent	 data	 processing	 and	 learning	 [189].	 Four	
representative	 considerations	 that	 are	 important	 to	 big	 data	
management	are	illustrated	below.	
	

2.3.1.	Contextualization	
	
Contextualization	is	the	process	of	identifying	the	data	relevant	

to	an	entity	(e.g.,	person,	thing,	location,	or	organisation)	based	on	
the	entity's	contextual	information	[238].	Contextual	information	
is	any	information	about	an	entity	that	can	be	used	to	reduce	the	
amount	 of	 reasoning	 required	 (e.g.,	 via	 filtering,	 aggregation,	 or	
inference)	 for	 decision	 making	 within	 the	 scope	 of	 a	 specific	
application,	and	it	enhances	the	processing	of	data	in	large-scale,	
data-intensive	 IoT	 applications	 from	 various	 big	 data	 aspects,	
including	volume,	velocity,	and	variety	[239].	
The	 quality	 of	 any	 knowledge	 generated	 from	 data	 analysis	

depends	on	 the	 appropriateness	of	 the	 context	developed	when	
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collecting	 and	 managing	 the	 data	 itself	 [13].	 For	 example,	
production	and	maintenance	personnel	may	require	similar	data	
from	a	piece	of	manufacturing	equipment	on	 the	shop	 floor,	but	
their	 viewpoint	 is	 influenced	 by	 different	 interests	 since	
production	 creates	 value	 when	 the	 equipment	 runs,	 while	 the	
opposite	is	true	for	maintenance.	Given	the	variety	of	viewpoints	
in	production,	 it	 is	 critical	 that	data	 collection	and	management	
approaches	support	multiple	viewpoints	for	different	applications	
by	dynamically	linking	different	data,	information,	and	models	[76,	
81,	172,	176,	180].	
To	address	the	need	for	context,	manufacturing	data	researchers	

have	 focused	 on	 defining	 the	 semantics	 of	 data	 through	 data	
interoperability	 standards,	 such	 as	 MTConnect	 [148]	 and	 the	
Standard	 for	 the	 Exchange	 of	 Product	Model	Data	 (STEP	or	 ISO	
10303-242:2014)	 [87].	 Two	 other	 relevant	 examples	 are	 OPC	
Unified	 Architecture	 (OPC	 UA),	 which	 focuses	 on	 syntactic	
interoperability	 but	 also	 supports	 semantics	 through	 different	
companion	specifications	 [162],	and	 the	Universal	Machine	Tool	
Interface	 (umati),	 which	 is	 a	 standards	 branding	 effort	 through	
OPC	 UA	 proposed	 by	 the	 German	 Machine	 Tool	 Builders’	
Association	 (VDW)	 and	 Mechanical	 Engineering	 Industry	
Association	 (VDMA)	 [57].	As	data	analysis	 in	manufacturing	has	
moved	beyond	correlation	towards	causation	(i.e.,	the	reason	that	
explains	 an	 observation),	 though,	 data	 scientists	 and	
manufacturing	 solution	 providers	 at	 the	 leading	 edge	 have	
recognized	a	fundamental	limitation	inherent	to	the	data	currently	
collected	from	production	systems	[13].	That	is,	the	semantics	and	
information	models	used	 today	may	not	enable	 the	collection	of	
data	 of	 sufficient	 quality	 to	 identify	 causation.	 In	 response,	
researchers	 have	 started	 to	 explore	 ways	 to	 incorporate	 more	
context	to	data	by	creating	additional	links	between	collected	data	
through	alternative	concepts,	such	as	graph	theory.	For	example,	
the	 idea	 of	 a	 minimum	 information	 model	 that	 identifies	 the	
minimum	number	of	links	between	different	pieces	of	information	
to	establish	a	 complete	product	definition	has	been	explored	by	
[178].	 Similarly	 Bajaj	 and	 Hedberg	 presented	 a	 preliminary	
implementation	of	a	linked	data	graph	based	on	the	Handle	system	
that	connects	information	across	the	product	lifecycle	[8].	Much	of	
this	 work	 forms	 the	 foundation	 of	 the	 Model-Based	 Enterprise	
(MBE)	 concept,	 which	 describes	 the	 use	 of	 digital	 models	 to	
support	decision	making	throughout	the	product	lifecycle	[1].	MBE	
leverages	 notions	 of	 semantics,	 context,	 and	 viewpoint	
interoperability	from	the	digital	thread	(i.e.,	linked	systems	across	
the	product	lifecycle	[76])	to	enable	better	knowledge	extraction	
and	subsequently	improved	decision	making.	MBE	has	become	a	
topic	of	great	interest	with	organizations	such	as	American	society	
of	mechanical	 engineers	 	 (ASME),	 which	 has	 formed	 a	 Steering	
Group	and	Standards	Committee	to	explore	and	develop	MBE	for	
implementation	in	the	industry	[2].	
	
2.3.2.	Semantic	indexing	
	
The	prerequisite	to	intepret	data	and	support	subsequent	data	

analysis,	 such	 as	 supervised	 learning,	 is	 proper	 data	 labeling.	
While	syntax	concerns	with	whether	the	data	are	valid	from	a	data	
structure	point	of	view,	semantics	 refers	 to	 the	meaning	of	data	
and	 is	 therefore	 directly	 related	 to	 data	 analysis.	 Semantic	
methods	 can	 ensure	 performance	 efficiency	 for	 large	 data	
collection	 [53].	 For	 example,	 a	 semantically-enhanced	 cloud	
service	environment	can	be	developed	using	ontological	methods	
to	facilitate	the	discovery	of	resources	that	meet	the	users’	needs.	
Semantic	 indexing	 forms	 the	 basis	 for	 enhanced	 search	

processes	 for	 big	 data,	 and	 supports	 data	 variety,	 veracity,	 and	
value.	Furthermore,	it	is	also	realistic	in	handling	the	generation	of	
semantic	annotations	from	unstructured	documents.	
Semantic	 annotation	 (also	 known	 as	 semantic	 tagging	 or	

semantic	 enrichment)	 is	 the	 process	 of	 attaching	 additional	
information	 to	 various	 concepts	 so	 that	 the	 annotated	 data	 are	
machine	 interpretable	 [103].	 Written	 in	 machine-interpretable	

data	language,	these	notes	allow	computers	to	perform	operations	
such	 as	 classifying,	 linking,	 inferencing,	 searching,	 and	 filtering	
[39].	 A	 example	 of	 semantic	 data	 defined	 by	 the	 MTConnect	
standard	is	shown	in	Fig.	9	[120].	
In	semantic-based	indexing,	each	annotation	of	every	document	

is	 stored	 in	 a	 database,	 and	 a	weight	 is	 assigned	 to	 reflect	 how	
relevant	 the	ontological	 entity	 is	 to	 the	document	meaning.	The	
main	idea	is	that	the	more	semantically	“close”	two	concepts	are	in	
a	document,	the	higher	the	vector	values	[34].	
	

	
	

Fig.	9.	MTConnect	semantic	data	for	axis	Z11,	adapted	from	[120]	
	
A	 method	 for	 indexing	 semantic,	 non-transitory,	 computer-

stored	data	was	developed	by	[232]	and	comprises	the	following	
steps:	(1)	storing	the	data	in	a	database,	(2)	representing	the	data	
in	a	structured	framework	having	at	least	three	elements	derived	
from	an	ontology,	(3)	expressing	each	element	as	a	hierarchical-
index	value	based	on	an	ontology	such	that	semantic	information	
is	 embedded	 therein,	 (4)	 combining	 the	 elements	 in	 a	 multi-
dimensional	 index,	 and	 (5)	 converting	 the	 multi-dimensional	
index	into	a	one-dimensional	index.	US	Navy	researchers	extended	
this	process	(see	Fig.	10)	by	first	organizing	the	data	in	a	database	
using	the	resource	description	framework	(RDF)	model	[232].	The	
result	 is	 an	 one-dimensional	 index	 created	 from	 multiple	 RDF	
components	 embedding	 semantic	 information	 and	 providing	
facility	for	retrieving	data	from	big	data	stores.	
	

	
	

Fig.	10.	Method	for	semantic	indexing	of	big	data	using	a	multidimen-
sional,	hierarchical	scheme,	adapted	from	[232]	
	
2.3.3.	Data	cleansing	
	
Data	cleasing	refers	to	the	process	of	detecting	and	correcting	

errors	 in	 a	 dataset	 to	 improve	 data	 quality	 [135].	 It	 generally	
involves	 three	 steps:	 (1)	 define	 and	 determine	 error	 types,	 (2)	
search	and	identify	error	instances,	and	(3)	correct	the	uncovered	
errors	[135].	While	many	modern	database	systems	support	basic	
data	cleansing,	errors	 that	 involve	relationships	between	one	or	
more	 data	 attributes	 are	 often	 difficult	 to	 detect.	 For	 error	
detection,	 four	 general	 approaches	 are	 available	 [135]:	 (1)	
Statistical	method,	(2)	clustering,	(3)	pattern-based	method,	and	
(4)	association	rules.		
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Despite	 their	 wide	 adoption,	 these	 approaches	 are	 generally	
designed	 for	 simple	data	 tables	and	difficult	 to	apply	directly	 to	
manufacturing	related	big	data.	Specialized	techniques	have	been	
developed	 recently	 to	 tackle	 data	 cleansing	 in	 a	 variety	 of	 data	
types.	In	[251],	a	cleansing	technique	for	high-dimensional	Radio	
Frequency	Identification	(RFID)	data	has	been	presented.	The	key	
steps	 involve	 a	 series	 of	 logic	 functions	 based	 on	 the	 domain	
knowledge	 of	 production	 schedule	 and	 event,	 which	 allows	 the	
algorithm	to	be	efficiently	executed	in	real	time	to	process	a	large	
amount	 of	 RFID	 data	 and	 remove	 duplicate,	 merge	 redundant	
attributes	and	fill	missing	data	point.	In	[236],	local	outlier	factor	
(LOF)	has	been	investigated	for	erroneous	data	detection	in	high-
speed	time	series	data.	Using	a	sliding	window	the	sensing	signal	
is	 first	 divided	 into	multiple	 segments	which	 are	 considered	 as	
different	 objects,	 each	 of	 which	 having	 the	 attributes	 of	 time-
domain	 statistical	 features,	 such	 as	 the	mean	 and	 peak-to-peak	
value.	Next,	kernel-based	LOF	is	computed	to	evaluate	the	degree	
of	 each	 segment	 being	 considered	 as	 erroneous.	 Finally,	 the	
erroneous	segments	are	detected	based	on	an	application-specific	
threshold.	 The	 effectiveness	 of	 the	 method	 has	 been	 evaluated	
with	case	studies	of	wind	turbine	and	gearbox.	Advancement	in	the	
research	 of	 correcting	 erroneous	 image	 data	 has	 also	 been	
reported	recently,	with	sparse	representation	and	deep	learning	as	
representative	 techniques	 [166].	 Successful	 applications	 include	
super-resolution,	 which	 is	 the	 process	 of	 upscaling	 to	 improve	
details	within	an	image,	and	image	recovery	from	missing	pixels	
and	 significant	 noise	 [226].	 Applications	 of	 these	 techniques	 	 in	
manufacturing	have	yet	to	be	identified.	
	
2.3.4.	Data	storage	
	
Data	storage	management	has	become	a	fundamental	concern	as	

data	 volumes	 often	 exceed	 the	 capacity	 of	 storage	 hardware.	
Moreover,	 data	 variety,	 especially	 unstructured	 data	 such	 as	
images,	makes	the	traditional	relational	databases	unsuited	[85].	
The	complexity	of	big	data	has	motivated	the	development	of	new	
storage	 techniques	 capable	 of	 scaling	 with	 data	 quantity,	
optimizing	availability,	and	improving	retrieval	speed	[21].	
The	process	of	managing	storage	for	rapidly	growing	amounts	of	

data	 involves	 performing	 activities,	 such	 as	 data	 clustering,	
replication	 and	 indexing,	 in	 parallel	 to	 optimizing	 the	 storage	
process.	The	following	are	considered	critical	to	address	storage	in	
big	data	management:		

	

• Clustering	is	the	process	of	summarizing	large	volumes	of	data	
into	groups	where	similar	feature	entities	are	placed	together.	
Clustering	facilitates	the	accommodation	of	a	large	volume	of	
data	in	relatively	small	and	limited	storage	resources	[200].		

• Replication	is	the	key	factor	in	improving	the	availability	and	
robustness	of	data	in	distributed	systems.	Replicated	data	are	
stored	at	multiple	sites	to	enable	consistent	access	even	when	
some	copies	are	not	available	due	to	site	failures	[7].		

• Indexing	improves	the	efficiency	of	data	retrival.	It	addresses	
the	challenge	of	obtaining	optimized	query	execution	results	
when	a	large	volume	of	data	are	stored	at	distributed	sites	and	

facilitates	 the	 efficient	 use	 of	 data	 for	 decision	making	 and	
value	extraction	[53].	

	
Another	 important	 aspect	 of	 big	 data	 storage	 is	 data	 variety.	

Manufacturing	 data	 can	 be	 generally	 classified	 into	 structured,	
semi-structured,	 and	 unstructured	 data	 [23].	 Traditionally,	
manufacturers	 have	 been	 focused	 on	 structured	 data	 storage	 in	
relational	database	since	it	can	be	difficult	to	manage	unstructured	
data	due	to	a	lack	of	techniques.	The	advances	in	development	of	
nonrelational	(often	“NoSQL”)	databases	has	provided	an	means	to	
cope	with	big	data	heterogeneity	in	storage	[31].		
Selection	from	the	four	types	of	NoSQL	databases:	(1)	key-value	

stores,	 (2)	 column-oriented	 databases,	 (3)	 document	 databases,	
and	(4)	graph	databases	depends	on	the	properties	of	the	data	and	
type	 of	 application	 [85,	 91].	 For	 example,	 for	 fault	 detection	 in	
plastic	 injection	 molding	 machines	 [105],	 the	 data	 structure	 is	
heterogeneous,	 but	 the	 object	 of	 analysis	 (i.e.,	 manufacturing	
cycle)	 is	 clearly	 defined.	 This	 suggests	 the	 use	 of	 a	 document-
oriented	 NoSQL	 database,	 which	 allows	 each	 sample	 to	 have	 a	
completely	different	set	of	attributes.	
	
3.	Data	Processing	
	
After	data	is	acquired,	transmitted,	and	stored,	data	analysis	is	

performed	 to	 generate	 knowledge	 about	 the	 process	 [67].	 Data	
analysis	methods	can	be	classified	into	two	categories	depending	
on	function:	data	processing	and	learning.		
Data	processing	is	traditionally	built	on	statistical	models	that	

aim	 at	 inferring	 process	 status	 and	 optimizing	 quality-related	
parameters.	As	data	become	more	complex	and	applications	more	
heterogeneous,	these	methods	have	gradually	become	insufficient	
and	 are	 increasingly	 enhanced	 by	 other	 techniques	 [73].	
Conversely,	 data	 learning	 aims	 to	 learn	 from	 data	 the	 patterns	
related	 to	quality	 [137]	and	has	become	 increasingly	 important.	
With	 the	 continual	 increase	 in	 data	 volume	 and	 variety,	 the	
evaluation	of	data	quality,	 e.g.,	 uncertainty	 and	 redundancy,	has	
also	become	a	major	 focus	of	data	processing	 [25].	This	chapter	
focuses	on	recent	developments	in	data	processing,	with	the	state-
of-the-art	summarized	in	Table	2.	
	
3.1.	Statistical	analysis	
	
Statistical	methods,	such	as	SPM	and	DoE,	form	the	foundation	

of	process	monitoring	and	optimization	[144].	When	data	volume	
and	variety	is	low,	these	techniques	are	effective	in	their	respective	
applications,	 but	 as	 data	 volume	 and	 variety	 increase,	 	 new	
techniques	are	needed	to	enhance	the	their	capability.	
	
3.1.1.	Statistical	process	monitoring	

	
Traditional	 SPM	 assumes	 that	 for	 an	 “in-control”	 process,	

process	 variables	 (e.g.,	 pressure)	 and	 product	 quality	 (e.g.,	
dimension)	 follow	 a	 Gaussian	 distribution.	 Accordingly,	 control	
limits	can	be	set	using	statistics,	such	as	t-	or	Hotelling's	t-squared,	
to	alert	on	the	potential	occurrence	of	faults	or	anomalies	[134].	

Table	2.	State-of-the-art	for	data	processing	
Big	data	V’s	 Statistical	analysis	 Uncertainty	handling	 Data	visualization	

Volume	 Definitive	screening	design	[97-99]	 Uncertainty	decomposition	[66,	96,	
116)	

Information	graphics:	sunburst	chart,	heat	map,	
parallel	coordinates	chart,	Sankey	diagram,	
directed	network	[12,	20,	42,	79]	

Velocity	 Distributed	data	processing:	edge	computing	[188];	distributed	storage	[22];	parallel	algorithm	(e.g.,	parallel	particle	filter)	

Variety	 Multiple	profiles	sensor-based	
statistical	process	monitoring	[243]	

Multi-variate	uncertainty	
propagation	modeling:	Bayesian	
network	[150,	179,	181]	

Information	graphics:	sunburst	chart,	heat	map,	
parallel	coordinates	chart,	Sankey	diagram,	
directed	network	[12,	20,	42,	79]	

Veracity	

Non-Gaussian	statistical	process	
monitoring:	statistical	pattern-based,	
kernel	independent	component	
analysis-based,	multiple	profiles	
sensor-based	[72,	118,	243]	

Data	filtering:	multi-mode	Kalman	
filtering,	local	search	particle	
filtering	[174,	222]	

Correlation	analysis:	Maximal	Information	
Coefficient	[173];	
Topological	data	analysis:	Mapper	clustering	[62,	
63,	191]		
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As	data	volume	and	variety	increase,	factors	such	as	nonlinearity	
among	variables	and	dynamics	(e.g.,	correlation	among	time	steps)	
can	 violate	 the	 Gaussian	 assumption	 [73,	 170],	 making	 the	
traditional	 statistics	 insufficient	 to	 characterize	 the	 process	 and	
reducing	 the	effectiveness	of	SPM.	Research	efforts	 to	overcome	
this	 limitation	 have	 been	 focused	 on	 features	 that	 capture	 the	
dominant	 process	 characteristics.	 Furthermore,	 these	 methods	
alleviate	 issues	 created	 by	 high	 data	 volume	 and	 variety	 by	
condensing	data	into	a	compact	feature	set	[73].		
Lee	et	al.	 investigated	kernel	independent	component	analysis	

(KICA)	for	SPM	to	extract	the	dominant	independent	components	
capturing	data	nonlinearity	[118].	The	developed	method	has	been	
evaluated	for	process	fault	detection	using	the	Tennessee	Eastman	
(TE)	 chemical	 production	 benchmark	 dataset,	which	 consists	 of	
five	operating	units,	52	process	variables,	and	21	faults.	The	KICA-
based	 method	 has	 shown	 to	 outperform	 traditional	 SPM	 in	
detection	accuracy.	Guo	et	al.	 reported	an	 iterative	 control	 limit	
tuning	 method	 for	 feature-based	 process	 monitoring,	 which	
accounts	 for	 both	 univariate	 limit	 and	multivariate	 limit	 among	
sensing	 signals	 [64].	 It	 has	 been	 successfully	 applied	 in	 quality	
control	 of	 lithium-ion	 battery	 welding	 process	 to	 eliminate	 the	
Type	II	error,	as	shown	in	Fig.	11.	
		

	
	

Fig.	11.	Ultrasonic welding control limit tuning, adapted from [64] 
	

He	 and	 Wang	 developed	 statistics	 pattern	 analysis	 (SPA)	 to	
account	 for	 both	 nonlinearity	 and	 dynamics	 by	 forming	 a	
comprehensive	set	of	features	to	capture	variable	characteristics	
(e.g.,	 mean),	 interactions	 (e.g.,	 correlation),	 and	 dynamics	 (e.g.,	
autocorrelation)	 [72,	74].	Principal	 component	analysis	 (PCA)	 is	
used	to	quantify	the	dissimilarities	among	statistical	patterns	(SPs)	
to	define	detection	index.	When	a	new	measurement	is	available,	
dissimilarity	between	its	SP	and	training	SPs	is	compared	to	a	pre-
defined	threshold	for	fault	detection.		
One	 assumption	 in	 feature-based	 SPM	 research	 is	 that	multi-

variate	signals	have	similar	characteristics	that	can	be	described	
by	shared	features.	However,	significant	sensor	heterogeneity	may	
occur,	leading	to	data	veracity	issues,	such	as	out-of-sync,	drift,	and	
inter-correlation.	In	[243],	a	SPM	framework	to	account	for	sensor	
individuality	 is	developed.	 Specifically,	 dynamic	 time	warping	 is	
applied	to	aligning	out-of-sync	signals.	Sensor	drift	is	compensated	
for	 via	 numerical	 optimization,	 and	 clustering	 is	 carried	 out	 for	
sensor	 correlation.	 The	 developed	 method	 is	 evaluated	 in	 a	
manufacturing	 process	 monitored	 by	 26	 sensors,	 with	 out-of-
control	 average	 run	 length	 (ARL)	 showing	 how	 fast	 an	 out-of-
control	process	is	detected	as	a	performance	indicator.	Compared	
to	other	feature-based	SPM,	Significant	reduction	in	ARL	is	shown.	
 
3.1.2.	Design	of	experiments	

	
Process	 optimization	 requires	 the	 knowledge	 of	 influential	

parameters	and	their	causal	effect	on	quality.	The	effective	use	of	
DoE	 has	 proven	 crucial	 in	 screening	 candidate	 parameters	 and	
determining	 causal	 effect	 for	 optimization,	 leading	 to	 products	
with	 higher	 quality	 and	 reliability	 [144].	 However,	 when	 the	
number	of	parameters	becomes	large,	experimental	time	and	data	
volume	increases	significantly	and	quickly	become	an	 issue.	The	

most	common	solution	has	long	been	fractional-factorial	designs	
[144].	 Despite	 its	 popularity,	 these	 designs	 suffer	 from	 several	
limitations	pertinent	to	big	data,	including	(1)	difficulty	to	estimate	
curvature	 in	 response	 surface,	 which	 is	 expected	 in	 complex	
processes,	 (2)	 undesirable	 confounding	 effects	 requiring	
additional	 experimental	 runs,	 and	 (3)	 poor	 scalability	 since	 the	
number	 of	 runs	 increases	 exponentially	 with	 the	 number	 of	
process	 parameters	 [97,	 144].	 Recently,	 definitive	 screening	
design	 (DSD)	 has	 been	 developed	 and	 shown	 the	 potential	 of	
extending	DoE	methodology	to	big	data	[97].	Desirable	properties	
of	 DSD	 include:	 (1)	 quadratic	 effects	 are	 quantifiable,	 (2)	 main	
effects	are	completely	independent	of	two-factor	interactions	and	
these	 interactions	 are	 never	 completely	 confounded	 with	 each	
other,	 and	 (3)	 number	 of	 required	 experimental	 runs	 only	
increases	 linearly	 with	 process	 parameters.	 Different	 from	
traditional	experimental	design,	DSD	is	constructed	via	numerical	
optimization.	Recent	work	has	further	extended	DSD	for	nominal	
inputs	 and	 blocking,	 which	 arranges	 experimental	 runs	 into	
groups	(termed	blocks)	that	are	similar	to	one	another	[98,	99].		
DSD	has	been	successfully	applied	in	a	variety	of	fields.	Erler	et	

al.	 investigated	 DSD	 to	 determine	 the	 effect	 of	 six	 process	
parameters	on	a	formylation	protein-crosslink	reaction	[45].	The	
authors	reported	that	the	number	of	required	experimental	runs	
could	be	reduced	from	over	70	with	a	traditional	approach	to	17,	
corresponding	 to	 a	 significant	 reduction	 in	data	volume	 [45].	 In	
manufacturing,	 Patil	 investigated	 DSD	 to	 establish	 a	 predictive	
model	 to	 optimize	 weld	 tensile	 strength	 and	 hardness	 in	 gas	
tungsten	 arc	 welding	 [165].	 DSD	 has	 shown	 to	 be	 effective	 in	
revealing	all	main	effects	and	quadratic	effects	and	 interactions,	
leading	to	models	with	good	fit.	Several	recent	publications	on	DSD	
are	 focused	 on	 AM	 process	 optimization	 by	 determining	 causal	
influence	of	process	parameters	on	part	quality	[132].		
	

3.2.	Uncertainty	handling	
	
With	the	expansion	of	data	volume	and	variety,	data	quality	has	

become	a	critical	issue	in	big	data	analysis	[201].	Data	quality	can	
be	 described	 by	 several	measures,	 including	 uncertainty,	 which	
may	be	caused	by	several	 factors	(see	Fig.	12).	This	section	first	
presents	 uncertainty	 quantification	 (UQ)	 methods,	 followed	 by	
filtering	for	data	quality	improvement.	
	

	
	

Fig.	12.	Source	of	data	uncertainty,	adapted	from	[149]	
 
3.2.1.	Uncertainty	quantification	
	
The	“standard”	UQ	metric	is	the	standard	deviation	[96].	When	

a	 measurement	 is	 indirectly	 obtained	 from	 other	 variables,	 the	
combined	uncertainty	equals	the	root	of	the	sum	of	the	variances	
and	 covariances	 of	 these	 variables	 weighted	 by	 the	 partial	
derivatives	(e.g.,	how	the	result	varies	as	these	variables	change).	
This	principle	has	been	widely	used	since	a	direct	UQ	of	a	variable	
of	 interest	 is	often	difficult	 to	obtain.	 In	 [116],	 a	UQ	method	 for	
micro	gear	measurement	is	developed	using	reference	geometries,	
such	 as	 cylinders,	 to	 address	 the	 issue	 of	 a	 lack	 of	 micro-scale	
master	 gears.	 The	 sub-level	 uncertainties	 involve	 calibration	 of	
cylindrical	 standard,	 production	 process	 change,	 and	 system	
deviation.	In	[66],	uncertainty	in	micro	gear	lifetime	prediction	is	
evaluated	 from	 two	 sources,	 tooth	 root	 stress	 from	 FEA	 and	
Weibull	distribution	parameters,	with	each	having	its	uncertainty	
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further	 decomposed.	 For	 example,	 the	 uncertainty	 of	 tooth	 root	
stress	is	associated	with	FEA	input	and	mesh	discretization.		
Increasingly,	Bayesian	network	(BN)	has	shown	to	be	effective	

in	 estimating	 system	 uncertainty	 propagation	 [179].	 BN	 is	 a	
probabilistic	 graphical	model	 consisting	 of	 nodes	 and	 arcs.	 The	
nodes	represent	system	variables	and	arcs	denote	the	conditional	
probability	between	the	nodes.	The	parameters	of	the	conditional	
probabilities	 are	 estimated	 from	 the	 collected	 data	 using	 the	
maximum	likelihood	(i.e.,	parameters	that	maximize	the	likelihood	
of	 generating	 the	 data)	 [181].	 After	 parameter	 estimation,	
uncertainty	 can	 be	 propagated	 from	 variables	 to	 output	 with	 a	
distribution	estimated	via	Markov	Chain	Monte	Carlo	(MCMC).	BN	
can	 also	 reveal	 the	 contribution	 of	 each	 variable	 to	 the	 output	
uncertainty,	which	is	useful	to	guide	uncertainty	reduction.	A	UQ	
case	study	 for	evaluating	 injection	molding	energy	consumption	
was	 presented	 in	 [150],	 which	 took	 into	 account	 polymer	
properties	and	process	parameters.	The	constructed	BN	is	shown	
in	Fig.	13.	Sensitivity	analysis	has	shown	that	polymer	density	is	
the	 most	 dominant	 contributor	 of	 uncertainty	 in	 total	 energy	
consumption.	
	

	
	

Fig.	13.	BN	for	injection	molding,	adapted	from	[150]	
	
3.2.2.	Data	filtering	
	
One	 of	 the	 main	 purposes	 of	 UQ	 is	 to	 “update”	 raw	 sensor	

measurements	to	obtain	a	more	accurate	reading.	Filtering	is	one	
key	technique	used.	The	concept	of	filtering	is	the	alternating	use	
of	a	state	evolution	model	(relating	current	state	to	future	state)	
and	 a	 measurement	 model	 (relating	 state	 to	 measurement)	 to	
more	accurately	approximate	the	true	state.	Kalman	filter	(KF)	and	
particle	filter	(PF)	are	the	most	commonly	investigated	methods.	
KF	 is	 based	 on	 the	 assumptions	 that	 (1)	 both	 process	 and	

measurement	noise	is	Gaussian	and	(2)	both	state	evolution	and	
measurement	 model	 are	 linear	 [15].	 It	 analytically	 combines	
estimators	from	these	two	models	to	improve	estimation	accuracy	
and	reduce	uncertainty	[15].	Extended	KF	(EKF)	and	unscented	KF	
(UKF)	 further	 extend	 KF	 to	 nonlinear	 systems	 [9,	 16].	 Recent	
developments	 of	 KF	 include	 a	 switching	 KF	 for	 bearing	
degradation	phase	identification	[174]	and	an	integrated	KF	and	
expectation-maximization	 algorithm	 to	 estimate	 both	 bearing	
degradation	 state	 and	 degradation	 model	 parameters	 [227].	
Beyond	 state	 tracking,	 KF	 has	 also	 been	 widely	 used	 for	
simultaneous	 localization	 and	 mapping	 (SLAM),	 refering	 to	 the	
estimate	 of	 both	 robot	 and	 landmark	 locations,	 which	 is	
considered	of	great	potential	in	human-robot	collaboration	[219].	
Compared	with	KF,	PF	has	the	advantage	of	taking	into	account	

nonlinear	and	non-Gaussian	property	by	design	since	it	uses	a	set	
of	 weighted	 particles	 to	 sample	 the	 posterior	 distribution,	
regardless	 of	 its	 form	 [5].	 This	 makes	 it	 attractive	 to	 tackle	
uncertainty	 in	 complex	 manufacturing	 systems.	 Furthermore,	

particle	weights	update	are	independent,	meaning	it	can	leverage	
parallel	 computing	 to	 tackle	 the	 data	 velocity	 issue.	 One	 major	
focus	of	PF	research	is	the	particle	resampling	strategy	to	maintain	
particle	 diversity	 for	 effective	 approximation	 of	 state	 posterior	
distribution.	 A	weight-and-space	 based	 resampling	method	was	
developed	 for	 object	 location	 and	 velocity	 tracking	 in	 [124].	 In	
[222],	 a	 local-search	 PF	 (LSPF)	 was	 presented	 that	 allows	
resampled	particles	to	explore	a	wide	range	of	values	(see	Fig.	14).	
It	has	shown	to	reduce	tool	wear	prediction	error	from	11.7%	to	
3.5%,	as	compared	to	standard	resampling	[222].	PF	has	also	been	
integrated	with	a	total	variation	(TV)	filter	to	detect	abrupt	faults	
in	aircraft	engines	to	support	predictive	maintenance	[223].	
	

 
 

Fig.	14.	LSPF-based	tool	wear	estimation,	adapted	from	[222]	
	
3.3.	Visualisation	
	
Data	 visualization	 is	 the	 creation	 and	 study	 of	 visual	

representation	 of	 data	 [92].	 Effective	 visual	 design	 helps	 to	
discover	 patterns	 and	 quickly	 gain	 insights.	 This	 section	 first	
presents	 representative	 graphics	 to	 improve	 the	 clarity	 in	
visualizing	the	structure	of	big	data	as	compared	to	conventional	
charts.	Then,	two	techniques	to	further	understand	data	structure	
are	presented.	
	
3.3.1.	Information	graphics	
	
Information	 graphics	 can	 be	 broadly	 categorized	 into	 five	

groups:	time	series,	distribution,	map,	hierarchy,	and	network	[79].	
Conventional	graphics,	such	as	line	chart,	have	become	ineffective	
in	visualizing	the	structure	of	big	data	that	is	often	hierarachical	
and	 interconnected.	 Several	 	 less	 well-known	 but	 effective	
graphical	 methods	 have	 been	 reported	 recently.	 For	 example,	
alarm	 record	 analysis	 has	 been	 performed	 in	 a	 chemical	
production	plant,	which	is	divided	into	three	levels:	1st	level	with	
19	production	units,	2nd	level	with	400	machines,	and	3rd	level	with	
over	2,000	sensors/actuators	distributed	on	the	machines	[42].	
A	sunburst	chart,	as	shown	in	Fig.	15,	is	first	utilized	to	provide	

an	overview	of	the	alarm	distribution.	This	chart	is	well	suited	for	
displaying	 hierarchical	 data	 with	 each	 level	 of	 the	 hierarchy	
represented	 by	 a	 ring	with	 the	 innermost	 as	 the	 top	 hierarchy.	
Each	 ring	 is	 further	 broken	 into	 its	 contributing	 segments	 (e.g.,	
different	 units,	machines,	 or	 sensors/actuators).	 The	 number	 in	
each	 segment	 represents	 the	 corresponding	 tag.	 For	 example,	
sensor/actuator	#1688	on	machine	#467	in	unit	#14	has	produced	
the	 largest	percentage	of	alarms,	as	represented	by	the	segment	
size,	that	is	proportional	to	the	alarm	occurrence	at	that	level.	
To	further	reveal	the	alarm	patterns,	heat	maps	can	be	deployed,	

which	a	tool	to	reveal	the	relationship	between	two	variables	(as	
network)	or	the	values	of	a	function	of	two	variables	(as	map)	[20].	
In	 this	 example,	 the	 frequency	 of	 alarm	 co-occurrence	 between	
two	items	is	shown	in	Fig.	16.	The	color	intensity	represents	the	
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alarm	relative	frequency.	It	is	seen	that	most	of	the	diagonal	cells	
are	 in	 dark	 color,	 suggesting	 the	 alarm	 corresponding	 to	 these	
items	frequently	occured	in	pairs.	On	the	other	hand,	dark-colored	
off-diagonal	 cells	 indicate	 potential	 causation	 between	 different	
items,	e.g.,	between	units	#11	and	#4.	
	

 
 

Fig.	15.	Sunburst	chart	for	overview	of	alarm	record	[42]	
	

 
 

Fig.	16.	Heat	maps	for	alarm	co-occurrence,	adapted	from	[42]	
	
Beyond	 pattern	 recognition	 in	 hierarchical	 data,	 another	

important	 application	 of	 visualization	 is	 high-dimensional	 data.	
For	 structured	 high-dimensional	 data,	which	 can	 be	 stored	 in	 a	
table	where	 each	 row	 represents	 a	 data	 point	 and	 each	 column	
represents	a	data	attribute	(e.g.,	feature	of	a	product),	techniques	
such	as	Spider	web	diagram	and	parallel	coordinates	plot	[79]	are	
commonly	used	 for	purpose	of	visualization.	The	 former	assigns	
data	 dimensions	 into	 different	 radial	 axes	 of	 the	 Spider	 web	
diagram,	whereas	the	latter	uses	parallel	vertical	axes	to	represent	
data	dimensions.	The	values	from	each	dimension	that	correspond	
to	 the	 same	 data	 point	 are	 connected,	 and	 clustering	 of	 these	
connected	lines	allows	the	pattern	of	data	at	different	dimension	
or	 groups	 of	 dimensions	 to	 be	 discerned.	 These	 two	 types	 of	
diagrams	have	been	frequently	used	to	compare	features	among	
different	products	for	decision-making.	
For	 unstructured	 high-dimensional	 data	 such	 as	 images,	 for	

which	 each	 of	 its	 dimension	 (e.g.,	 pixel)	 does	 not	 represent	 a	
semantically	 meaningful	 data	 attribute,	 dimension	 reduction	
method	 is	 generally	 used	 by	 projecting	 the	 most	 essential	
information	 into	 low-dimensional	space	 for	visualization.	One	of	
the	 popular	 techniques	 developed	 recently	 is	 t-Distributed	
Stochastic	Neighbor	Embedding	(t-SNE)	[213].	This	technique	first	
constructs	a	probability	distribution	of	pairs	of	high-dimensional	
data	points	such	that	similar	data	points	have	a	high	probability	of	
being	 selected.	Next,	 it	 defines	 a	 similar	probability	distribution	
over	 data	 points	 in	 a	 low-dimensional	 space	 and	 adjust	 the	
locations	of	these	points	by	minimizing	the	Kullback–Leibler	(KL)	
divergence	between	the	two	distributions,	to	minic	the	structure	
of	 the	 high-dimensional	 data.	 t-SNE	 is	 widely	 used	 in	 big	 data	
analytics	 to	 verify	 data	 separation	 corresponding	 to	 various	

process	or	machine	conditions	in	condition	monitoring,	which	is	
described	in	Section	4.		
Other	 noted	 graphics	 for	 big	 data	 visualization	 include	 the	

Sankey	diagram	[12,	112]	and	Directed	Network	[42].	Customized	
visual	design	is	often	required	for	specific	tasks.	Reported	works	
include	visualization	of	shop	floor	logistics	[251,	252],	production	
network	[104]	and	production	status	[106,	107].	
	
3.3.2.	Correlation	analysis	
	
Data	 correlation	 is	 anticipated	 when	 the	 same	 process	 is	

measured	 using	 multiple	 sensors.	 How	 to	 distinguish	 the	
complementary	information	from	redundancy	has	been	an	active	
research	 topic	 [216].	 With	 big	 data,	 conventional	 correlation	
coefficients	 (e.g.,	 Pearson)	 can	 become	 ineffective	 since	 the	
relationship	among	variables	is	often	nonlinear	[147].	Therefore,	
there	 is	 an	 increasing	 need	 for	 techniques	 to	 detect	 these	
relationships	regardless	of	the	forms	[173].		
Mutual	 information	 (MI)	 between	 two	 variables,	 a	 concept	

related	to	information	theory	and	denoted	as	𝐼(𝑋, 𝑌),	has	provided	
a	 means	 of	 dealing	 with	 the	 increasing	 complexity	 in	 data	
correlation.	 𝐼(𝑋, 𝑌) 	can	 be	 interpreted	 as	 the	 change	 of	
information	in	𝑋	before/after	having	knowledge	of	𝑌	with	a	small	
MI	 indicating	 a	 weak	 relationship.	 Reshef	 et	 al.	 developed	 a	
procedure	to	compute	MI	for	large-scale	dataset,	termed	maximal	
information	 coefficient	 (MIC)	 [173].	 The	 idea	 is	 that	 if	 a	
relationship	 exists	 between	 two	 variables,	 then	 a	 grid	 can	 be	
drawn	on	the	scatter	plot	to	partition	the	data	to	encapsulate	the	
relationship.	Specifically,	to	compute	MIC,	all	grids	up	to	a	maximal	
resolution	(subject	to	a	predefined	threshold)	are	explored	and	the	
largest	 MI	 for	 each	 grid	 is	 selected	 and	 normalized	 to	 the	
corresponding	grid	dimension.	Then,	MIC	is	the	maximum	of	these	
selected	 values	 [173].	 Experimental	 evaluations	 over	 various	
functional	 relationships	 have	 shown	 that	 MIC	 provides	 a	 more	
effective	way	of	detecting	non-linear	correlations,	 such	as	cubic,	
exponential,	 and	 sinusoidal,	 compared	 to	Pearson	 coefficient.	 In	
manufacturing,	MI	 has	 been	widely	 considered	 as	 an	 important	
criterion	in	feature	selection,	for	which	a	threshold	is	typically	set	
up	to	determine	whether	additional	feature	provides	substantially	
more	information	than	features	already	selected	[126,	216].		
	
3.3.3.	Topological	data	analysis	
	
Data	analysis	often	 takes	advantage	of	 certain	aspects	of	data	

structure,	e.g.,	SVM	finds	a	hyperplane	that	separates	two	clusters.	
Understanding	data	structure	provides	potential	insights	into	data	
patterns.	 However,	 with	 big	 data,	 visualizing	 data	 structures	 to	
facilitate	data	analysis	has	become	more	difficult.		
There	are	two	ways	of	describing	data	structure:	geometry	and	

topology	[59].	Geometry	is	focused	on	the	metrics	(e.g.,	distance)	
to	 determine	 the	 relationship.	 Topology	 concerns	 locality	 (e.g.,	
whether	points	remain	nearby)	and	therefore	provides	a	means	of	
analyzing	 data	 at	 a	more	 refined	 level	 [50,	 59].	 Among	 various	
topological	 data	 analysis	 (TDA)	methods,	 Mapper	 [191],	 a	 local	
clustering	algorithm,	has	garnered	considerable	attention.	Mapper	
features	a	filter	function	that	guides	clustering	of	high-dimensional	
data	(e.g.,	large	number	of	process	variables)	with	three	steps:	(1)	
divide	filter	range	(output	range	of	filter	function)	into	overlapping	
intervals,	(2)	cluster	data	per	intervals,	and	(3)	link	clusters	that	
have	shared	points	[191].	This	procedure	is	illustrated	in	Fig.	17	
with	a	topology	of	a	1-D	simplicial	complex	comprising	vertices	(0-
simplex)	 and	 edges	 (1-simplex).	 This	 topology	 visualizes	 how	
large-scale	data	are	organized	and	the	resolution	of	the	topology	
can	be	adjusted	by	changing	the	number	of	intervals	[59].	
TDA	has	 found	 applications	 in	many	biomedical	works	 [131],	

such	as	 identification	of	diabetes	subtypes	[123]	and	pulmonary	
conditions	 [177].	 The	 research	 in	manufacturing	 is	 still	 limited.	
One	 of	 the	 reported	works	 concerns	 variable	 selection	 for	 yield	
prediction	 in	 chemical	 plants	 [62,	 63].	 The	 concept	 is	 to	 first	
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recognize	 the	 structures	 that	 encode	 yield	 patterns.	 Then,	 by	
tuning	the	resolution,	fundamental	subgroups	can	be	identified	if	
the	pattern	persists	over	large	changes,	and	statistical	tests	can	be	
performed	 to	 identify	 the	 variables	 that	 best	 differentiate	 these	
subgroups.	In	this	work,	multidimensional	scaling	(MDS)	is	chosen	
as	a	filter	function	because	it	provides	the	smoothest	variations	in	
the	yield.	Each	output	dimension	contains	14	intervals	with	80%	
overlap,	leading	to	196	intervals	in	filter	range.	
	

 
 

Fig.	17.	Illustration	of	TDA	steps	[59]	
	
The	 topological	 graph	 is	 shown	 in	 Fig.	 18	 (a).	 Each	 node	 is	

colour-coded	by	normalized	mean	yield	 for	 that	node.	High/low	
yield	subgroups	are	isolated,	and	a	Kolmogorov-Smirnov	(KS)	test	
is	 performed	 to	 select	 influential	 variables.	 One	 of	 the	 selected	
variables	 is	 visualized	 in	 Fig.	 18	 (b)	 for	 which	 the	 difference	
between	 subgroups	 B	 and	 D	 is	 significant.	 In	 total,	 11	 of	 45	
variables	 are	 selected	 as	 influential	 and	 are	 shown	 to	 have	
achieved	comparable	yield	prediction	accuracy	as	the	case	of	using	
all	45	variables	with	75%	reduction	in	computational	time.	
	

 
 

Fig.	18.	Topological	graph	coloured	by	yield	data	(a)	and	an	influential	
process	variable	(b)	[62]	
	
4.	Data	Learning		
 
Data	 processing	 infers	 process	 quality	 via	 the	 underlying	

statistical	 model	 (e.g.,	 distribution)	 that	 the	 collected	 data	 are	
expected	to	follow.	While	it	has	the	advantage	of	building	models	
through	 domain	 knowledge	 without	 being	 limited	 by	 data	
availability,	 it	 is	 challenged	by	 the	 increasing	heterogeneity	 and	
complexity	in	data	[73].	Machine	learning	represents	a	shift	from	
the	statistical	methods	by	allowing	task-specific	data	pattern	to	be	
discovered	 via	 a	 set	 of	 representative	 training	 data,	 without	
relying	on	the	assumption	about	the	data	[234].	ML	can	be	broadly	
categoried	into	four	categories	as	shown	in	Fig.	19.	Recently,	deep	
learning,	which	is	a	subset	of	ML	has	emerged	as	a	powerful	tool	in	
data	 learning,	 It	 takes	 advantage	 of	 advanced	 computational	
infrastructure	 to	optimize	neural	netowrks	 specifically	designed	
for	handling	complexity	embedded	in	big	data	(e.g.,	images)	and	of	
the	increased	data	availability,	providing	rich	training	samples	to	
better	represent	 the	 individuality	of	each	task	[117].	DL	has	not	
only	advanced	the	state-of-the-art	in	various	common	applications	
in	 manufacturing,	 such	 as	 condition	monitoring,	 fault	 diagnosis	

and	 remaining	 useful	 life	 (RUL)	 prognosis	 [217,	 250],	 but	 also	
opened	 up	 various	 	 new	 research	 opportunities,	 such	 as	
reinforcement	leanring	and	transfer	learning	[163,	199].		
	

	
	

Fig.	19.	Categories	of	ML/DL		
	
4.1.	From	machine	learning	to	deep	learning	
	
In	 manufacturing	 applications,	 both	 ML	 and	 DL	 have	 been	

studied	to	relate	data	patterns	to	improving	product	quality.	The	
key	difference	lies	in	the	manner	of	feature-based	representation,	
either	extracted	manually	in	ML	or	automatically	in	DL	[217].	ML	
techniques	 rely	predominantly	 on	 the	 empirical	 knowledge	 that	
humans	 have	 acquired	 about	 the	 machines	 and	 processes,	 and	
become	 increasingly	 limited	 to	 data	 processing	 associated	 with	
modern	manufacturing	systems,	due	to	the	increasing	complexity	
[250].	In	comparison,	DL	has	shown	to	hierarchically	extract	and	
decompose	complex	features	into	manageable	levels	for	automatic	
and	 accurate	 data	 representation.	 This	 section	 starts	 with	 an	
overview	of	ML	and	DL,	followed	by	unsupervised	and	supervised	
learning,	the	two	most	common	types	of	learning.	
	

4.1.1.	Representative	machine	learning	techniques	
	
ML	can	be	exemplied	as	a	computer	program	that	learns	from	

experience	 (e.g.,	 training	data)	with	respect	 to	certain	 tasks	and	
improves	 its	performance	with	experience	[140].	The	essence	of	
ML	is	to	transform	a	task	into	an	optimization	process	applied	to	
the	 corresponding	 (training)	 data.	 Therefore,	 substantial	
development	of	ML	came	as	a	result	of	advances	in	optimization	
methods	such	as	quadratic	programming	(QP),	classification	and	
regression	tree	(CART),	and	backpropagation	[71].	Using	machine	
fault	diagnosis	as	an	exemple,	decision	tree	formulates	the	task	as	
a	 sequential	 decision-making	 process,	 for	 which	 decision	
thresholds	 are	 set	 for	 data	 attributes	 at	 each	 step	 (e.g.,	
temperature	 >	 or	 ≤	 30˚C).	 The	 objective	 is	 to	 find	 a	 series	 of	
threholds	using	CART	that	minimize	the	diagnostic	error	[94].		RF	
further	extends	the	decision	tree	by	utilizing	ensemble	of	trees.	It	
allows	each	tree	to	explore	only	a	portion	of	the	data	attributes	and	
then	averages	the	results	to	improve	model	robustness	[233].	In	
contrast,	 SVM	 formulates	 the	 task	 as	 finding	 a	 hyperplane	 that	
maximizes	 the	 margin	 of	 seperation	 between	 the	 data	 points	
representing	 different	 machine	 fault	 types	 using	 QP	 [216].	
Artificial	Neural	Network,	on	the	other	hand,	formulates	a	task	a	
mapping	 from	 the	 data	 to	 conditional	 probabilities	 of	 the	 data	
belonging	 to	 different	 fault	 types.	 The	 objective	 is	 to	 adjust	
network	weights	using	backpropagation,	such	that	the	probability	
of	data	belonging	to	the	correct	fault	type	is	maximized	[182].		
	

4.1.2.	Deep	learning	
	
While	ML	techniques	work	well	on	structured	data	with	clearly	

defined	 data	 attributes,	 they	 become	 ineffective	 in	 processing	
unstructured	data	that	are	increasingly	prevalent,	such	as	images	
[117].	For	years,	tackling	these	types	of	data	requires	design	of	a	
suitable	 data	 representation	 based	 on	 domain	 expertise.	 Data	
representation	 refers	 to	 the	 transformation	of	 raw	data	by	data	
learning	techniques	(after	they	have	been	collected	and	processed	
as	discussed	in	Sections	2	and	3,	respectively)	into	a	form	that	can	
be	 associated	 with	 relevant	 manufacturing	 tasks,	 e.g.,	 a	 feature	
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vector.	However,	 traditional	ML	tehcniques	 is	 limited	 	 in	 finding	
suitable	 data	 representation	 due	 to	 data	 complexity	 [117].	 For	
example,	many	techniques	have	been	developed	to	extract	image	
features	for	surface	defect	recognition,	such	as	edges	[69],	shapes	
[35],	 and	peaks	 [11].	However,	 relying	 solely	on	 these	 low-level	
features	 has	 shown	 to	 be	 insufficient	 since	 they	 are	 shared	 by	
various	 defects.	 Therefore,	 higher-level	 representations	 are	
required	[117],	which	is	at	the	core	of	DL.	
DL	refers	to	a	series	of	neural	networks	consisting	of	multiple	

layers,	 which	 allow	 the	 decomposition	 of	 complex	 data	 into	
multiple	levels	and	the	assembly	of	multi-level	features	layer-by-
layer	 into	 a	 high-level	 representation.	 DL	 can	 be	 considered	 an	
extension	to	ANN	with	various	structrures	specifically	designed	for	
unstructured	data	types,	such	as	image,	as	shown	in	Table	3.	For	
example,	Convolutional	neural	networks	(CNN)	consists	of	a	series	
of	convolutional	layers	for	image	analysis,	as	shown	in	Fig.	20	(a)	
[109].	Neurons	in	each	layer	are	connected	to	the	local	regions	of	
the	preceding	layer	through	a	set	of	weights	called	kernels.	Local	
features	 are	 extracted	 through	 convolution	 at	 lower	 layers.	 The	
series	of	layers	assembles	local	features	into	high-level	features	for	
image	 characterization	 [117].	Recurrent	neural	networks	 (RNN)	
and	 its	 variants	 –	 long	 short-term	 memory	 (LSTM)	 and	 gated	
recurrent	units	(GRU)	–	are	suitable	for	analyzing	sequence	with	
each	layer	consisting	of	a	series	of	cells.	Each	cell	corresponds	to	a	
sequence	 step	 (e.g.,	 a	 snapshot	 of	machine	 state).	 Each	 layer	 is	
highlighted	 by	 the	 mechanism	 of	 maintaining	 past	 information,	
allowing	the	relationship	among	steps	(e.g.,	degradation	pattern)	
to	 be	 explicitly	 analyzed	 [84]	 as	 shown	 in	 Fig.	 20	 (b).	 The	 key	
aspect	of	DL	is	that	the	representation	and	feature	are	not	designed	
manually	by	a	human	as	compared	 to	conventional	ML.	 Instead,	
they	are	learned	from	data	through	backpropagation	[117].	
	

	 	
(a) (b) 

 

  
Fig.	20.	(a)	Convolutional	layers,	(b)	Recurrent	layers	[58]	

	
4.1.3.	Unsupervised	learning	
	
Sensing	data	in	manufacturing	can	be	highly	complex	due	to	the	

manifestation	 of	 many	 interactions.	 Thus,	 it	 is	 essential	 that	 a	
learning	 method	 extract	 the	 most	 relevant	 information.	 This	
section	 hghlights	 the	 research	 of	 DL-based	 feature	 extraction		
followed	 by	 its	 application	 in	 data	 synthesis.	 Both	 tasks	 are	
“unsupervised”	since	there	is	no	supervision	as	to	what	features	
and	synthesised	data	will	be	used	for.	
	

4.1.3.1	Feature	extraction	
	
Intuitively,	DL	allows	feature	extraction	by	projecting	data	into	

a	 network	 with	 progressively	 reduced	 layer	 dimensions	 before	
reconstrucing	 the	 data	 themselves.	 As	 a	 result,	 the	 network	 is	
forced	to	find	the	most	essential	information	and	discard	the	rest.	
A	widely-used	realization	of	this	concept	is	an	Auto-encoder	(AE)	
[250].	Several	variants	of	AE	exist.	The	most	common	variant	is	the	
sparse	AE	(SAE),	which	limits	the	number	of	non-zero	elements	in	
features	 to	 further	 improve	 discriminability	 [160].	 The	
effectiveness	of	AE	has	been	confirmed	in	[33]	by	comparing	the	
features	extracted	from	AE	and	SAE	for	bearing	diagnosis.		
In	contrast,	DBN	extracts	features	by	training	RBMs	on	a	layer-

by-layer	basis	[224].	Shao	et	al.	demonstrated	the	effectiveness	of	
RBMs	 in	 obtaining	 features	 with	 progressively	 improved	
discriminability	from	vibration	signal	of	induction	motors	with	six	
different	health	conditions,	as	shown	in	Fig.	21	[186].		
	

	
	

Fig.	21.	t-SNE	of	features	at	different	levels	of	RBMs	[186]	
	
4.1.3.2.	Data	synthesis	
	
For	 certain	 tasks	 such	 as	 fault	 diagnosis,	 balanced	 data	 of	

various	faults	of	interest	is	highly	desired	since	unbalanced	data	
can	 lead	 to	serious	 learning	bias	 [250].	However,	balanced	data	
collection	is	not	always	feasible	since	data	related	to	faults	is	often	
limited	 [107].	 The	 unbalance	 issue	 can	 be	 alleviated	 via	 data	
synthesis.	However,	tranditional	methods	(e.g.,	Synthetic	Minority	
Over-sampling	Technique	or	SMOTE)	often	rely	on	interpolation	
and	cannot	capture	complex	data	characteristics	 [107].	A	major	
breakthrough	came	with	generative	adversarial	networks	(GAN)	
[60],	 a	 DL	 method	 that	 is	 able	 to	 learn	 salient	 features	 and	
synthesize	data	with	high	fidelity.	The	idea	of	GAN	is	a	competition	
between	 two	 components:	 a	 generator	 analyses	 real	 data	 to	
produce	 synthetic	 ones,	 and	 a	 discriminator	 distinguishes	 the	
synthetic	 data	 from	 the	 real	 ones.	 These	 two	 are	 trained	
alternately	to	improve	the	capability	of	each,	and	the	final	result	is	
a	equilibrium	state,	as	shown	in	Fig.	22.		
Implementation	of	GAN	in	manufacturing	has	been	reported	in	

the	 literature.	Lee	et	al.	 compared	 the	effectiveness	of	GAN	and	
SMOTE	 in	 synthesizing	 data	 related	 to	 faults	 for	 motor	 fault	

Table	3.	Data	learning	for	manufacturing	process	monitoring	and	prediction	

Data	type	 Data	form	 Typical	source	 Main	functional	
characteristics	 Deep	architecture		 Typical	task		 Reference	

Unstructured	

2-D	Image		 Vision	system	 Shift/scale	
invariant	to	local	
features	

Convolutional	neural	
network	(CNN)	

Process	&	machine	
anomaly	
diagnosis/human	
activity	recognition	

[24,	65,	93,	230,	
235,	240,	247]	

Time-frequency		image		
[40,	221,	250]	Periodic	1-D	

sequence	 Rotary	device	sensing	

Non-periodic	
1-D	sequence	

Machine	health	
monitoring	

Modeling	
relationship	
among	sequence	
points	

Recurrent	neural	
network	(RNN)	

Trend	prediction	 [245,	248]	

Sequential	process	 Sequential	process	
modeling	 [146,	244]	

Structured	 Data	table	 Machine/process/	
parameters	

Handling	many	
variables	

Fully-connected	
network	(ANN/DBN)	

Non-sequential	
process	modeling	 [133,	224]	
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diagnosis	 [119].	 It	 is	 shown	 that	 GAN	 consistently	 outperforms	
SMOTE	 in	 terms	 of	 fault	 classification	 accuracy	 across	 different	
unbalanced	ratios.	Similar	work	is	reported	in	[187],	in	which	the	
quality	 of	 synthetic	 faulted	 motor	 data	 has	 been	 confirmed	
through	 statistical	 analysis.	 Wang	 et	 al.	 investigated	 synthetic	
vibration	 signals	 for	 various	 gearbox	 faults.	 Spectral	 analysis	
showed	 that	 the	 synthetic	 data	 effectively	 captured	 important	
features,	such	as	the	characteristic	frequencies	[228].	
	

	
	

Fig.	22.	Generative	adversarial	network,	adapted	from	[60]	
	

	
4.1.4.	Supervised	learning	
	
Contrary	to	unsupervised	learning	where	data	transformation	is	

carried	out	without	supervision	from	specific	manufacturing	tasks,	
supervised	 learning	 establishes	 data	 transformation	 with	 the	
guidance	 (or	 supervision)	 from	 predefined	 data	 labels	 (e.g.,	
process	 condition)	 associated	with	 specific	manufacturing	 tasks	
(e.g.,	 process	 condition	 identification).	 With	 high	 flexibilities	
provided	 by	 DL	 architectures,	 supervised	 learning	 has	 seen	
considerable	development	in	recent	years.	In	particular,	there	has	
been	an	increasing	effort	in	transforming	data	into	suitable	forms	
to	better	leverage	the	DL	architectures	and	in	customizing	the	DL	
architectures	 to	 better	 fit	 the	manufacturing-related	 tasks.	 This	
section	presents	recent	research	efforts	 in	CNN	and	RNN,	which	
are	two	dominant	methods	in	DL-based	supervised	learning.	
	

4.1.4.1	Convolutional	neural	network	
	
One	of	the	main	characteristics	of	big	data	in	manufacturing	is	

the	increasing	use	of	image	data,	which	has	significantly	advanced	
the	research	field	of	in-situ	process	monitoring	and	made	it	one	of	
the	major	 research	 trends	of	big	data	analytics.	 Image	data	may	
contain	 information	 that	 are	 otherwise	 not	 captured	 by	 one-
dimensional	 data	 (such	 as	 time	 series),	 thereby	 improving	 the	
observability	of	the	object	or	process	being	monitored.	From	the	
published	literature,	CNN	has	shown	to	be	the	most	popular	and	
effective	 tool	 in	 extracting	 embedded	 information	 from	 image	
data.	 As	 an	 example,	 Weimer	 et	 al.	 reported	 on	 surface	 defect	
classification	 based	 on	 deep	 CNN	 (DCNN)	 that	 outperforms	 the	
traditional	feature-based	methods	[230].		
To	 account	 for	 the	 characteristics	 of	 various	 defect	 types	

embedded	 in	 different	 background	 textures,	 1.3	 million	 images	
were	used	 for	 training.	Dropout	 and	𝑙! 	regularization	have	been	
the	 two	 popular	 techniques	 to	 prevent	 “overfitting”.	 Overfitting	
refers	 to	 the	 phenomenon	 that	 the	 perforamnce	 of	 the	 neural	
network,	 e.g.,	 accuracy,	 at	 the	 training	 stage	 far	 exceeds	 that	 at	
testing	stage.	This	is	mainly	due	to	the	fact	that	model	parameters	
(e.g.,	network	weights)	are	over-sensitive	to	small	variations	in	the	
training	 data	 (e.g.,	 due	 to	 noise)	 and	 consequently,	 cannot	
effectively	 capture	 the	 underlying	 data	 pattern.	 The	 concept	 of	
dropout	 is	 to	 randomly	 drop	 neurons	 to	 “average	 out”	 noise	
effects.	 The	 technique	 of	𝑙! 	regularization	 prevents	 the	 weights	
from	 having	 excessive	 adjustment	 during	 the	 network	 training	
stage	and	therefore,	making	them	less	sensitive	to	data	variations.	
Zhang	 et	 al.	 demonstrated	 an	 effective	 vision	 system	 based	 on	

DCNN	 for	 process	 deviation	 detection	 in	 selective	 laser	melting	
(SLM)	 [247].	 Process	 deviation	 affects	 powder	 melting	 and	
solidification,	which	is	reflected	as	changing	surface	textures	and	
recognized	by	DCNN.	In	[235],	a	vision	system	was	developed	to	
provide	 quality	 inspection	 at	 critical	 locations	 for	 automotive	
windshield	glass	priming.	The	work	is	highlighted	by	deploying	DL	
in	edge	devices,	which	mitigated	latency	and	facilitated	real-time	
decision	making	[235].	Similar	work	can	be	found	in	[24,	65,	240].	
DCNN	has	also	shown	to	be	effective	in	analyzing	thermal	images,	
which	 reflect	 the	 heat	 distribution	 associated	 with	 structural	
defect	or	 improper	maintenance	 (e.g.,	heat	 concentration	due	 to	
improper	 lubrication)	 that	 is	 not	 captured	 by	 RGB	 cameras.	
Janssens	 et	 al.	 reported	 success	 by	 DCNN	 in	 detecting	 bearing	
anomalies	such	as	outer	raceway	fault,	particle	contamination,	and	
lubrication	with	high	 accuracy	 (91%	~	95%),	 based	on	 thermal	
image	analysis	[93].	Furthermore,	the	authors	identified	regions	in	
the	thermal	images	related	to	the	specific	anomalies	by	reversing	
the	convolution	operations	to	link	to	physical	insight.	
Beyond	images	captured	by	vision	systems,	DCNN	has	also	been	

increasingly	extended	to	the	analysis	of	time	series	data.	Wang	et	
al.	has	built	a	condition	monitoring	system	to	quantify	the	severity	
level	 of	 gearbox	 faults,	 whereby	 vibration	 signals	 were	 first	
transformed	 into	 time-frequency	 images	 by	 means	 of	 wavelet	
transform,	in	order	to	leverage	the	DCNN	architecture	to	extract	
fault-related	 patterns	 [221].	 Similarly,	 in	 [40],	 the	 authors	
reported	a	method	for	both	bearing	fault	type	and	severity	 level	
recognition	using	vibration	signals,	which	were	first	converted	to	
images	using	wavelet	packet	transform,	before	analyzed	by	DCNN	
for	 fault	pattern	recognition.	Three	 fault	 types	and	 four	severity	
levels	 were	 identified	 using	 the	 developed	 method,	 and	 high	
accuracy	has	been	achieved.		
	
4.1.4.2	Recurrent	neural	network	
	
Sequential	data	in	manufacturing	are	commonly	associated	with	

machine	degradation,	which	suits	RNN	and	its	variants	by	design.	
Several	works	on	RNN-based	machine	health	prediction	have	been	
reported.	Zhang	et	al.	developed	a	bi-directional	LSTM	for	aircraft	
engine	remaining	useful	life	(RUL)	estimation.	To	account	for	noisy	
measurements	 and	 engine	 heterogeneity,	 more	 than	 30,000	
sequences	 extracted	 from	 historical	 engine	 data	 were	 used	 for	
training.	 The	 bi-directional	 LSTM	 allows	 information	 to	 flow	
forward	for	prediction	and	backward	for	disturbance	smoothing	
and	 has	 been	 shown	 to	 improve	 RUL	 prediction	 accuracy	
compared	to	uni-directional	LSTM	[245].	In	[248],	improved	RUL	
estimation	 for	 lithium-ion	 battery	 has	 been	 achieved	 using	
ensemble	 LSTM,	 which	 allows	 estimates	 to	 be	 a	 probability	
distribution	rather	than	a	deterministic	value.		
	

	
	

Fig.	23.	DED	thermal	history	prediction,	adapted	from	[146]	
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More	recently,	as	AM	starts	its	transition	into	mainstream,	RNN	
and	 its	 variants	 have	 been	 configured	 to	 model	 the	 sequential	
printing	process	by	taking	into	account	inter-layer	effects.	In	[244],	
an	 LSTM-based	model	 has	 been	 shown	 to	 improve	 part	 tensile	
strength	 prediction	 accuracy	 for	 fused	 deposition	 modelling	
(FDM).	 Specifically,	 each	 LSTM	 cell	 takes	 layer-wise	 sensing	
signals	 from	 IR	 sensor,	 thermocouple,	 and	 accelerometer	 as	 an	
input	to	represent	each	printing	layer.	Then,	LSTM	forward	path	
models	 the	 inter-layer	 effects	 for	 joint	prediction	of	part	 tensile	
strength.	Layer-wise	thermal	history	prediction	in	directed	energy	
deposition	 (DED)	has	 been	 reported	 in	 [146]	with	 a	GRU-based	
model.	 Over	 250,000	 training	 points	 were	 generated	 by	 FEA.	
Evaluation	 has	 shown	 that	 the	 developed	model	 can	 accurately	
predict	thermal	history	in	DED	(see	Fig.	23).	
	

4.2.	Reinforcement	learning	
	
Dynamic	optimization	 requires	 sequential	process	adjustment	

under	specific	 conditions	at	each	 time	step	 to	optimize	 the	 final	
outcome.	Manufacturing	examples	include	shop	floor	scheduling,	
fixed-horizon	 process	 optimization,	 and	 robotic	 control.	 The	
learning	 technique	 for	 this	 task	 is	 reinforcement	 learning	 (RL),	
which	 aims	 at	 finding	 the	 optimal	 decision	 in	 dynamic	 settings	
through	 interactions	 with	 the	 environment	 [199,	 210].	 It	 is	
inspired	by	how	a	human	worker	learns	to	master	complex	tasks	
through	a	series	of	feedback	loops	between	perception	and	action	
without	a	rigid	rulebook.	This	section	first	presents	the	basics	of	
RL	 with	 its	 recent	 development	 in	 scheduling	 and	 process	
optimization.	Then,	one	of	 the	most	active	research	 fields	 in	RL,	
deep	reinforcement	learning	(DRL),	is	presented	under	the	context	
of	robotic	planning.	

	
4.2.1.	Dynamic	programming	
	
The	 framework	of	RL	 is	 shown	 in	Fig.	24.	The	process	can	be	

summarized	 as	 an	 agent	 (e.g.,	 order	dispatcher,	 robot)	 interacts	
with	 an	 environment	 (e.g.,	 shop	 floor,	 object	 cluster)	 and	
progressively	 learns	 to	 perform	 action	 (e.g.,	 assign	 job,	 execute	
certain	motion	command)	that	maximizes	long-term	reward	(e.g.,	
minimizing	job	completion	time,	achieving	object	grasping),	upon	
observing	a	state	input	(an	instance	of	the	environment).		
RL	 distinguishes	 itself	 from	 unsupervised	 and	 supervised	

learning	 in	 two	 aspects:	 (1)	 data	 (e.g.,	 state)	 are	 self-generated	
from	previous	interaction,	and	(2)	the	reward	quantifies	the	long-
term	quality	of	state	or	action.	Formally,	it	is	quantified	via	state	
value	function	𝑣"(𝑠, 𝑎)	or	action	value	function	𝑞"(𝑠, 𝑎),	where	𝑠	is	
the	state,	𝑎	is	the	action,	and	𝜋	represents	the	policy,	or	decision,	
for	a	given	state	[199].	RL	is	potentially	data-intensive	as	it	does	
not	rely	on	the	rules	to	manually	limit	the	search	space	as	in	rule-
based	method.	Therefore,	the	initial	state	space	in	RL	is	often	large	
[199].	For	example,	if	10	variables	are	used	to	describe	the	state	
(e.g.	,10	machines),	and	each	variable	has	10	discrete	values	(e.g.,	
utilization	level),	the	initial	number	of	states	for	RL	to	explore	is	
1010.	On	the	contrary,	certain	combinations	of	the	state	variables	
may	be	deemed	by	the	rules	as	infeasible	and	therefore,	excluded.		
	

	
	

Fig.	24.	Framework	of	reinforcement	learning,	adapted	from	[199]	
	
If	 the	environment	dynamics,	or	model,	 is	known,	 the	optimal	

policy	𝜋∗ can	 be	 found	 using	 dynamic	 programming	 (DP).	 The	
intuition	 is	 that	 any	 optimal	 value	 function	 can	 be	 obtained	 by	

collectively	maximizing	the	reward	from	an	immediate	action	and	
the	 value	 function	 from	 the	 successor	 state.	 𝜋∗ 	can	 then	 be	
determined	from	the	optimal	value	function	[199].	

	
4.2.2.	Model	scheme	generalization	
	
When	 the	 environment	 model	 is	 unavailable	 as	 in	 most	

production	applications,	the	realistic	goal	is	to	sample	sequences	
of	 interactions	 to	 infer	 dynamics.	 One	 of	 the	 main	 model-free	
techniques	 is	 Q-learning,	 which	 iteratively	 updates	 action-value	
function	based	on	sampled,	immediate	reward,	and	the	maximum	
action-value	 function	 from	 the	 subsequent	 state.	 Model-free	 RL	
has	been	investigated	in	manufacturing	for	fixed-horizon	process	
and	shop	floor	scheduling.		
Dornheim	et	al.	developed	Q-learning	based	optimal	control	for	

deep	 drawing	 where	 processing	 of	 a	 single	 workpiece	 (one	
episode)	involves	a	constant	number	of	discrete	control	steps	(Fig.	
25)	[43].	The	state	is	represented	by	stamp	force,	blank	infeed,	and	
blank-holder	offset.	The	action	determines	blank	holder	force.	The	
action-value	function	is	approximated	by	ANN,	and	the	reward	is	
determined	by	internal	stress,	wall	thickness,	and	material	usage.	
RL	is	carried	out	in	an	FEA	simulator,	ensuring	effective	evaluation	
of	 the	 reward.	 Furthermore,	 process	 conditions	 are	 varied	
stochastically	to	simulate	the	real	environment.	It	has	been	shown	
that	RL-based	methods	outperformed	baseline	methods	after	200	
episodes	of	training.	Stricker	et	al.	reported	an	order	dispatching	
system	 using	 Q-learning	 to	 maximize	 machine	 utilization	 with	
value	function	modeled	by	ANN	[196].	The	state	is	the	number	of	
orders,	waiting	time,	and	machine	state.	The	action	assigns	order	
using	 𝜖 -greedy	 criterion,	 allowing	 agent	 to	 “explore”	 random	
options	with	 probability	 of	𝜖 	to	 reduce	 the	 chance	 of	 settling	 in	
local	minimum	 [199].	 Evaluation	 has	 shown	 that	 90%	machine	
utilization	 rate	 is	 achieved,	 a	 10%	 improvement	 over	 the	 rule-
based	method.	Similar	work	on	RL-based	scheduling/planning	can	
be	found	in	[141,	142,	229].		
	

	
	

Fig.	25.	RL-based	control	for	deep	drawing,	adapted	from	[43]	
		

4.2.3.	Deep	reinforcement	learning	
	
RL	has	been	regarded	as	an	effective	approach	to	breaking	the	

traditional	 rigid	 control	 scheme	and	 improving	 the	 capability	of	
robotics	in	dynamic	situations.	However,	conventional	model-free	
RL	is	limited	in	terms	of	the	complexity	of	action-value	functions	
that	 can	 be	 effectively	 approximated.	 The	 problem	 is	 further	
exacerbated	in	robotics	where	complex,	multi-modal	sensing	data	
is	essential	to	capturing	both	the	environment	and	the	interactions	
between	 the	 robot	 and	 human	 worker.	 Recent	 development	 in	
DRL,	 which	 is	 the	 combination	 of	 DL	 and	 RL,	 has	 shown	 great	
potential	in	achieving	this	objective	due	to	the	capability	of	DL	in	
analyzing	 large	 volume	 and	 variety	 of	 sensor	 data	 and	
approximating	complex	action-value	functions	for	robotic	control.	
Levine	et	al.	presented	a	novel	method	for	robotic	object	grasp	

learning	[122].	The	method	consists	of	two	components:	a	DCNN-
based	 grasp	 predictor	 that	 analyses	 workspace	 images	 to	
determine	 the	 probability	 of	 a	 motion	 producing	 a	 successful	
grasp,	and	a	servo	mechanism	that	selects	the	motion	to	maximize	
the	probability	in	the	predictor,	similar	to	action	in	Q-learning.	The	
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reward	 is	 1	 for	 a	 successful	 grasp,	 which	 updates	 the	 network	
parameters	in	the	direction	to	yield	higher	probability	of	success	
under	similar	input	and	0	otherwise.	Starting	from	random	motion,	
after	over	800,000	grasp	attempts	equivalent	to	millions	of	image	
inputs,	 the	 robot	 is	 able	 to	 intelligently	 handle	 various	 unseen	
object	clusters	[122].	In	[242],	a	robot	is	shown	to	be	able	to	learn	
more	 complex,	 human-like	 skills	 such	 as	 tossing.	 The	 authors	
leveraged	physics	 to	 first	 compute	 analytical	 solutions	 of	 object	
release	location	and	velocity.	Then,	a	fully-convolutional	network	
(FCN,	a	variant	of	CNN)	is	established	to	predict	“residual”	velocity	
to	account	 for	 factors	 that	can	alter	 the	 trajectory.	This	 learning	
process	can	be	considered	as	two	RLs	with	sequence	of	size	1,	as	
picking	up	and	throwing	each	requires	only	1	control	command	in	
this	 research	 as	 compared	 to	 multiple	 motion	 adjustments	
designed	in	[122].	The	reward	is	determined	by	residual	velocity	
prediction	error.	After	over	10,000	attempts,	the	robot	exceeded	a	
human	in	tossing	accuracy	[242].	
	
4.3.	Transfer	learning	
	
Intensive	 research	 on	 DL	 has	 produced	 a	 large	 number	 of	

solutions	 that	 are	 highly	 task-specific.	 Most	 of	 them	were	 built	
from	 scratch,	 using	 large-scale	 datasets	 and	 intensive	
computation.	Recently,	researchers	have	started	to	investigate	the	
possibility	of	knowledge	transfer	across	different	tasks	to	reduce	
the	effort	of	building	new	solutions	and	maximize	the	value	of	data	
that	 have	 already	 been	 generated.	 The	 relevant	 technique	 is	
termed	transfer	learning,	which	is	the	process		of	optimizing	the	
task	performance	 	 in	 the	 target	domain	by	using	 the	knowledge	
transferred	from	the	task	performed	in	the	source	domain	[163].	
This	section	introduces	this	technique	and	related		results.	
	
4.3.1.	Semi-supervised	learning	
	
Semi-supervised	 learning	 bridges	 unsupervised	 feature	

extraction	and	supervised	tasks	with	the	motivation	that	features	
extracted	through	unsupervised	learning	over	a	large	dataset	can	
be	 translated	 to	 various	 supervised	 tasks.	 This	 establishes	 the	
theoretical	foundation	for	realizing	transfer	learning.	
	

	
	

Fig.	26.	DBN	for	MRR	prediction,	adapted	from	[224]	
	
Sun	 et	 al.	 investigated	 semi-supervised	 learning	 involving	 a	

sparse	AE	for	extracting	current	signal	features	and	a	multi-layer	
perceptron	 (MLP)	 for	 motor	 fault	 classification	 [198].	 In	 the	
unsupervised	 stage,	 partial	 signal	 corruption	was	 performed	 to	
improve	the	feature	robustness.	Good	classification	accuracy	was	
reported.	Wang	 et	 al.	 investigated	 semi-supervised	 learning	 for	

predicting	material	 removal	 rate	 (MRR)	 in	 chemical-mechanical	
polishing	of	wafers	[224].	Specifically,	a	stack	of	RBMs	[83]	were	
constructed	for	feature	extraction	using	historical	data	from	over	
2,000	 wafers,	 and	 a	 perceptron	 carried	 out	 supervised	 MRR	
prediction	 (Fig.	 26).	 It	 was	 shown	 that	 the	 developed	 method	
improved	MRR	prediction	accuracy	over	other	ML	techniques.	The	
combination	 of	 RBM	 and	 perceptron	 was	 also	 investigated	 for	
bearing	degradation	phase	recognition	in	[133].	

	
4.3.2.	Domain	adaptation	
	
Domain	 adaptation	 differs	 from	 semi-supervised	 learning	 in	

that	it	aims	at	generalizing	well-performing	models	learned	from	
a	 source	domain	 to	 a	 target	domain	 (in	which	 the	 learning	 task	
shares	similarity	with	the	source	domain)	rather	than	transferring	
the	generated	features.	In	an	unsupervised	framework,	Sun	et	al.	
proposed	a	method	to	transfer	an	SAE	across	machine	tools	[197].	
Three	 strategies	were	 developed	 to	 enhance	 the	 transferability:	
(1)	weights	learned	in	source	domain	SAE	are	first	copied	to	target	
domain	 SAE,	 (2)	 Kullback–Leibler	 divergence	 between	 the	
activation	 from	 the	 two	SAEs	 is	used	as	 a	 constraint	 for	 feature	
transfer,	 and	 gradient	 of	 the	 weights	 in	 target	 domain	 SAE	 are	
obtained	 by	 minimizing	 the	 divergence,	 and	 (3)	 using	 the	
gradients,	 layer-wise	 weights	 update	 in	 target	 domain	 SAE	 is	
performed	 and	 generate	 final	 features.	 The	 framework	 of	 the	
method	is	illustrated	in	Fig.	27.	
The	most	common	research	direction	of	domain	adaptation	is	in	

supervised	 framework.	 The	 procedure	 is	 similar,	 involving	
network	structure	transfer	and	target	domain	weights	fine-tuning.	
Hasan	and	Kim	demonstrated	the	effectiveness	of	such	method	for	
bearing	 fault	 diagnosis	 under	different	working	 conditions	 [70].	
Specifically,	four	load	conditions,	from	1	to	4	HP,	and	six	bearing	
health	conditions	are	evaluated.	First,	a	source	DCNN	is	trained	on	
vibration	 data	 from	 one	 of	 the	 conditions	 (i.e.,	 source	 domain).	
Then,	final	DCNN	layer	is	fine-tuned	with	data	from	the	other	three	
conditions	 (i.e.,	 target	 domains).	 It	 has	 been	 shown	 that	 the	
transferred	DCNN	outperformed	the	model	trained	only	on	target	
domain	data	based	on	diagnostic	 accuracy	and	 reduced	 training	
time	by	half.	Similar	results	were	reported	in	[246].		
Motivated	by	the	observation	that	features	generated	from	early	

layers	 of	 deep	 network	 are	 very	 generic	 as	 compared	 to	 those	
generated	 later,	 researchers	have	 recently	 started	 to	 investigate	
the	off-the-shelf	deep	network	as	source	model,	such	as	AlexNet	
and	 VGG-16,	 to	 take	 advantage	 of	 their	 feature	 generation	
capability	achieved	by	training	over	massive	datasets	(e.g.,	over	10	
million	 images).	 Although	 these	 datasets	 are	 not	 related	 to	
manufacturing,	 state-of-the-art	 results	 in	 domain	 adaptation	
nevertheless	 have	 been	 achieved	 with	 only	 a	 small	 amount	 of	
target	 domain	 data	 required	 for	 fine-tuning	 for	 bearing	 fault	
diagnosis	[29],	surface	defect	classification	[102],	human	motion	
recognition	[128,	225],	and	part	identification	[110].	These	results	
suggest	 potential	 deeper	 connections	 among	 features	 learned	
across	 completely	 different	 domains,	 which	 constitue	 a	 future	
research	direction.	
	

	
	

Fig.	27.	Framework	of	transfer	of	SAE-based	model,	adapted	from	[197]	
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5.	Data	Security	
 
The	increasing	collection	and	use	of	big	data	on	the	factory	floor	

have	introduced	risks	that	have	made	data	security	a	critical	need	
[14,	46,	55,	231].	Historically,	industry	has	been	hesitant	to	exploit	
data	 from	manufacturing	systems	due	to	the	perceived	threat	of	
cyberattacks.	Well-publicized	 events,	 such	 as	 Stuxnet,	 and	more	
traditional	attacks,	such	as	phishing,	have	created	a	strong	sense	
of	 unease,	 especially	 when	 coupled	 with	 growing	 government	
regulations	 on	 the	 distribution	 and	 use	 of	 data.	 Information	
technology	 (IT)	professionals	 share	even	greater	 concern	as	 the	
age,	 obsolescence,	 and	 variety	 of	 operating	 systems	 and	 control	
technologies	that	are	central	to	manufacturing	have	created	a	large	
number	of	attack	surfaces	that	may	be	exploited	by	bad	actors	[80].	
Thus,	 data	 security	 is	 essential	 to	 enable	 the	 technologies	 and	
solutions	that	have	been	presented	in	Sections	2-4.	The	goal	of	this	
section	is	to	provide	manufacturers	with	the	foundation	needed	to	
understand	all	security	considerations	and	risks	so	that	the	right	
combination	of	technologies	can	be	deployed.	
	

5.1.	Relevant	perspectives	
	
The	primary	focus	of	data	security	in	manufacturing	has	been	the	

protection	 of	 sensitive	 information	 (e.g.,	 intellectual	 property,	
customer	information)	and	the	security	of	networked	devices	[55,	
231].	 While	 these	 areas	 remain	 critical,	 it	 is	 important	 to	 note	
other	considerations	that	arise	from	the	use	of	big	data,	such	as	the	
trust	that	must	be	established	to	ensure	the	quality	and	value	of	
subsequent	data	analysis	[77,	78,	108].	
	
5.1.1.	Data	management	perspective	
	
The	 traditional	 perspective	 on	 data	 security	 can	 be	 described	

using	the	“CIA	triad”	as	shown	in	Fig.	28	[4]:	
	
• Confidentiality	(C)	reflects	the	ability	to	limit	access	to	data	to	
authorized	users	

• Integrity	 (I)	 reflects	 the	 ability	 to	 ensure	 the	 accuracy,	
authenticity,	and	completeness	of	data	

• Availability	 (A)	 reflects	 the	ability	 to	make	data	available	 to	
authorized	users	on	demand	

	
These	 principles	 can	 also	 be	 considered	 by	 their	 negation:	
disclosure,	alteration,	and	denial.	By	mapping	these	considerations	
onto	 the	 general	 process	 of	 transferring	 a	 part	 design	 to	 a	
manufacturing	supplier,	security	can	be	achieved	if	unauthorized	
disclosure	of	a	part	model	is	prevented,	no	part	model	is	altered,	
and	no	part	model	is	missing	and	thus	denied	to	the	supplier.		
	

	
	

Fig.	28.	CIA	Triad	mapped	onto	the	process	of	transferring	a	part	design	
to	a	manufacturing	supplier,	adapted	from	[4].	
	
The	 considerations	 described	 by	 the	 CIA	 triad	 are	 critical	 in	

ensuring	 the	general	 security	of	big	data	 in	 smart	 factories.	The	
impacts	that	may	result	 from	not	enforcing	these	considerations	

go	 beyond	 the	 loss	 of	 critical	 information,	 including	 the	 loss	 of	
reputation,	 productivity,	 or	 even	 life	 [55;	 231].	 Traditional	
strategies	 to	 address	 these	 concerns	 in	 manufacturing	 include	
encryption	(see	Section	5.2.1)	[46,	55,	231],	network	segmentation	
(e.g.,	 firewalls),	 root	authorization,	secure	boot,	and	virtual	 local	
area	 networks	 (VLAN)	 [55].	 Many	 governmental	 policies	 and	
standards	 also	 exist	 to	 promote	 data	 security	 from	 the	 data	
management	perspective,	which	will	be	the	focus	of	Section	5.3.	
	
5.1.2.	Data	use	perspective	
	
Beyond	 traditional	 data	 security	 considerations,	 the	 quality	 of	

any	 analysis	 depends	 entirely	 on	 the	 trustworthiness	 of	 data,	
which	is	based	on	three	pillars	that	form	the	basis	of	the	semantic	
web	concept	(see	Fig.	29)	[77,	78,	108]:	
	

• Authentication	 reflects	 the	ability	 to	determine	the	 integrity	
and	provenance	of	data	

• Authorization	reflects	the	ability	to	determine	permissions	on	
the	use	of	data	

• Traceability	reflects	the	ability	to	determine	the	history	(e.g.,	
generation,	modification,	and	use)	of	data	throughout	lifecycle	

	
The	objective	of	authentication	is	to	determine	who	did	what	to	

the	 data,	 e.g.,	 the	 act	 of	 a	 designer	 acknowledging	 that	 the	 part	
model	is	his	design.	The	objective	of	authorization	is	to	determine	
what	can	be	done	to	the	data,	e.g.,	the	act	of	an	authority	approving	
the	part	model	 for	production.	The	objective	of	 traceability	 is	 to	
determine	where	or	when	some	action	was	done	to	the	data,	e.g.,	
the	 act	 of	 timestamping	 the	 part	 model	 based	 on	 when	 it	 was	
authorized	 for	 production.	 Collectively,	 these	 actions	 help	
establish	 trust	 in	 the	 part	 model	 such	 that	 a	 manufacturing	
supplier	can	determine	if	the	part	model	has	sufficient	veracity	to	
begin	production.	For	example,	if	a	relatively	long	period	of	time	
has	passed	since	the	part	model	was	authorized	for	production,	a	
supplier	may	decide	that	the	risk	of	a	bad	actor	altering	the	design	
is	 too	great.	 Similarly,	 a	 supplier	may	not	have	 trust	 in	 the	part	
model	if	the	approval	mechanism	(e.g.,	digital	certificates)	does	not	
correctly	correspond	to	the	recognized	authority.	
	

	
	

Fig.	29.	Three	pillars	of	trustworthiness	mapped	onto	the	process	of	
transferring	a	part	design	to	a	manufacturing	supplier	
	
The	 area	 of	 data	 trustworthiness	 has	 been	 a	 growing	 topic	 of	

interest	in	the	design	and	manufacturing	community,	especially	in	
highly	 regulated	 sectors	 such	 as	 aerospace	 and	 biomedical	
industries	 where	 product	 traceability	 is	 an	 essential	
requirement	[77,	 78,	 108].	 The	 digital	 thread	 paradigm	 (i.e.,	
linking	 design	 and	 manufacturing	 systems	 across	 the	 product	
lifecycle)	has	driven	much	of	this	research,	which	has	focused	on	
technologies	 such	 as	 data	 certification	 [77,	 78]	 and	 blockchain	
[108].	 AM	 has	 also	motivated	much	 of	 this	 research	 because	 it	
relies	 on	 digital	 data	 and	 deviates	 in	 workflow	 relative	 to	
subtractive	processes.	Since	much	of	the	state-of-the-art	has	been	
driven	by	highly	regulated	industries,	several	areas	of	standards	
development	 exist	 that	 target	 data	 trustworthiness,	 especially	
traceability,	which	is	the	focus	of	Section	5.3.	
	



 

17 

5.1.3.	Risk	management	
	
It	 is	 essential	 that	 a	 risk	 management	 approach	 be	 followed	

when	 assessing	 data	 security	 requirements	 [14].	 Risk	
management	 involves	 systematically	 identifying,	 assessing,	 and	
addressing	 risks.	 Typical	 data	 security	 practice	 in	 many	
organizations	is	to	apply	blanket	policies	to	ensure	no	breach	or	
attack,	but	such	an	approach	tends	to	limit	the	ability	to	generate	
value	 from	 big	 data	without	 substantially	 improving	 safety.	 For	
example,	 the	majority	 of	 data	 breaches	 typically	 occur	within	 a	
company	even	when	that	company	uses	cloud-based	platforms	to	
manage	 data,	 which	 limits	 the	 effectiveness	 of	 tools	 such	 as	
encryption	since	insiders	may	have	the	requisite	keys	to	decipher	
data	[46].	Thus,	the	confidentiality	risk	typically	associated	with	a	
cloud-based	platform	may	be	overblown	relative	to	the	value	of	the	
data	being	managed,	 and	 instead	of	 focusing	on	higher	 levels	of	
confidentiality,	 it	 is	more	 important	to	have	a	well-designed	key	
management	system	to	avoid	recognized	risks.	
Numerous	 tools	 exist	 to	 support	 industry	 through	 the	 risk	

management	 process,	 such	 as	 root	 cause	 analysis,	 Pareto	
diagrams,	 and	 probabilistic	 risk	 assessments	 [14].	 Several	
industry-based,	 consensus-driven	 frameworks	 have	 also	 been	
created	to	help	a	variety	of	organizations	identify	and	respond	to	
risks	 effectively	 given	 their	 priorities	 and	 goals.	 A	 well-known	
framework	 is	 the	 NIST	 Cybersecurity	 Framework	 (see	 Section	
5.3.3)	[155].	
	

5.2.	Practical	examples	
	
Various	data	security	technologies	and	standards	relevant	to	the	

use	of	big	data	are	available.	This	 section	presents	 the	basics	of	
three	 technologies	 that	 have	 been	 deployed	 or	 are	 of	 strong	
interest	to	manufacturing.	Representative	textbooks	such	as	that	
by	Andress	[4]	and	cybersecurity	frameworks	serve	as	references	
for	manufacturers	to	explore	solutions	from	the	state-of-the-art.		
	
5.2.1.	Cryptographic	hashing	and	encryption	
	
Hashing	is	a	fundamental	element	of	modern	cryptography	that	

uses	an	algorithm	to	transform	(or	“cipher”)	data	of	an	arbitrary	
length	(or	“plaintext”)	into	a	typically	fixed	and	shortened	message	
(or	“ciphertext”)	without	the	possibility	of	retrieving	the	original	
data	 [4].	 It	 is	 an	 essential	 component	 of	 various	 cybersecurity	
technologies,	 such	 as	 digital	 passwords,	 digital	 certificates,	 and	
blockchain.	A	common	use	of	hashing	 is	when	different	datasets	
need	to	be	compared	but	storing	and/or	sharing	the	datasets	as	
plaintext	presents	a	security	risk,	e.g.,	passwords	(see	Fig.	30).	In	
this	 case,	 hashing	 can	be	used	 to	 cipher	 the	plaintext	while	 still	
enabling	 a	 comparison	 between	 the	 datasets.	 Similarly,	 hashing	
can	be	useful	when	a	dataset	is	large	(e.g.,	 images	or	music)	and	
would	be	better	shortened	 for	comparison.	Another	good	use	of	
hashing	is	when	the	validity	of	dataset	needs	to	be	assessed,	and	
assessment	 can	 be	 conducted	 after	 hashing	 the	 original	 data	 so	
that	 it	will	not	be	disclosed.	For	many	manufacturing	use	 cases,	
hashing	is	sufficient	to	ensure	data	integrity.	
	

	
	

Fig.	 30.	 Example	 of	 hashing	 used	 to	 compare	 two	 datasets	 without	
disclosing	the	data	itself	
	
Encryption	 is	 another	 subfield	 of	 cryptography	 that	 uses	 an	

algorithm	 to	 cipher	 plaintext	 into	 ciphertext	 with	 one	 or	 more	
“keys”	[4].	The	key	difference	between	hashing	and	encryption	is	

that	encryption	provides	a	means	of	reversing	the	cipher	so	that	
the	original	data	may	be	 retrieved.	Encryption	 is	 a	 fundamental	
technology	that	enables	the	sharing	of	data	with	a	reduced	risk	of	
disclosure.	 The	 most	 common	 implementation	 of	 encryption	 is	
asymmetric	encryption	(see	Fig.	31),	which	relies	on	pairs	of	public	
and	private	keys.		
A	public	key	can	be	shared	to	encrypt	data,	but	encrypted	data	

cannot	be	read	without	a	private	key,	which	is	generated	per	user	
and	is	the	essential	component	to	protect	to	ensure	privacy.	Many	
well-known	applications	rely	on	asymmetric	encryption,	including	
Secure	 Sockets	 Layer	 (SSL)/Transport	 Layer	 Security	 (TLS)	 and	
secure/multipurpose	internet	mail	extensions	(S/MIME)	[77].		
	

	
	

Fig.	31.	Schematic	representation	of	asymmetric	encryption	
	

Despite	 the	power	of	encryption,	 it	 is	not	a	panacea	since	any	
actor	with	 an	 appropriate	 key	 can	 decrypt	 data.	 Therefore,	 key	
management	is	critical	to	successfully	implement	encryption	[46].	
Figure	32	provides	a	basic	overview	of	the	essential	processes	of	a	
key	management	system.	
	

	
	

Fig.	32.	Essential	processes	of	key	management,	adapted	from	[46]	
	
5.2.2.	Digital	certificates	
	
A	 digital	 certificate	 (or	 public	 key	 certificate)	 is	 an	 electronic	

document	 that	 contains	 metadata	 about	 a	 public	 key	 and	 a	
“signature”	from	an	authority	that	validates	this	metadata	[4,	204].	
The	 X.509	 standard	 (ISO/IEC	 9594-8:2014)	 provides	 the	 most	
common	format	for	digital	certificates,	which	are	primarily	used	to	
establish	trust	in	encryption	schemes	by	identifying	the	owner	of	
a	public	key	thereby	authenticating	it	[204].		
A	hierarchy	of	trust	is	essential	for	the	implementation	of	digital	

certificates.	It	consists	of	hardware,	software,	people,	policies,	and	
procedures	 [108,	 205].	 Figure	 33	 provides	 an	 example	 of	 a	
hierarchy	of	trust	proposed	by	Hedberg	et	al.	[78]	to	apply	digital	
certificates	to	support	certification	and	traceability	of	product	and	
manufacturing	 data.	 A	 root	 certificate	 authority	 empowers	 an	
audit	 service	 to	 sign	 certificates	 for	 various	 entities	 to	 provide	
different	services.	These	entities	can	then	be	authorized	to	provide	
other	 services,	 such	 as	 validating	 the	 type	 of	 data	 being	 used	
(native	or	derivative)	or	the	actual	use	of	that	data.		
Extending	 the	 typical	 X.509	 implementation	 with	 additional	

metadata	 provides	 authorization	 as	 well	 as	 traceability,	 which	
establishes	firm	trust	in	the	data	the	certificate	is	attached	to	[77,	
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108].	Hedberg	et	al.	described	a	Digital	Manufacturing	Certificate	
(DMC)	Toolkit	for	manufacturers	to	incorporate	digital	certificates	
into	four	open-data	formats	for	production:	ISO	10303-242:2014	
(STEP	 AP242),	 ISO	 6983-1:2009	 (G	 code),	 ANSI/DMSC	 Quality	
Information	Framework,	and	the	combined	ISO	32000	(Portable	
Document	 Format	 or	 PDF)	 and	 ISO	 14739	 (Product	
Representation	Compact	or	PRC)	[77].	
	

	
	

Fig.	33.	Hierarchy	of	trust	to	enable	digital	certificates,	adapted	from	[78]	
	

5.2.3.	Blockchain	
	
Blockchain	 is	 a	 distributed	 ledger	 system	 (or	 database)	 that	

contains	 a	 growing	 list	 of	 records	 called	 “blocks”	[237].	 The	
distributed	ledger	is	managed	by	anonymous	peers	adhering	to	a	
protocol	 that	 enables	 the	 verification	 of	 transactions	 without	
disclosing	 the	 participants	 of	 the	 transactions.	 The	 blockchain	
itself	is	designed	to	be	resistant	to	manipulation,	which	establishes	
trust	despite	the	anonymity	of	transactions.	Figure	34	provides	a	
basic	 example	 of	 how	 blockchain	 can	 be	 used	 to	 facilitate	 the	
secure	transfer	of	product	data	(e.g.,	a	part	model)	from	a	designer	
to	 a	manufacturer,	who	 can	 validate	 data	 integrity	 by	 using	 the	
blockchain	 to	 determine	 whether	 the	 data	 originated	 from	 the	
expected	 organization	 and	 whether	 the	 data	 transaction	 was	
completed	without	issue.	To	expand	on	this	concept,	a	reference	
information	model	that	establishes	blockchain-based	traceability	
for	 product	 and	 manufacturing	 data	 has	 been	 proposed	 by	
Hedberg	et	al.	[78].	
	

	
	

Fig.	34.	Example	of	using	blockchain	to	identify	breach	in	transmission	of	
data	file	to	a	manufactuer,	adapted	from	[157]	

5.3.	Regulatory	policies	and	standards	
	
Regulatory	policies	and	standards	add	further	requirements	on	

the	collection	and	use	of	big	data	for	smart	factories	and	introduce	
additional	 challenges	 for	 manufacturers	 as	 they	 may	 vary	 by	
jurisdiction	 or	 industry	 sector.	 This	 section	 presents	 a	 basic	
understanding	 of	 the	 types	 of	 regulatory	 and	 standards	
considerations	that	may	affect	manufacturing	with	a	focus	on	the	
US	market.	However,	similar	policies	can	be	expected	to	exist	 in	
other	jurisdictions.	
	
5.3.1.	Government	regulations	
	
A	primary	concern	of	government	 regulation	on	 the	collection	

and	use	of	data	is	to	limit	the	disclosure	of	sensitive	information	
for	 reasons	 of	 national	 or	 economic	 security.	 In	 the	 US,	 such	
regulations	 are	broadly	 referred	 to	 as	 “export	 controls”	 and	are	
described	by	the	Export	Administration	Regulations	(EAR)	[211].	
“Export”	refers	to	the	transfer	of	technologies,	including	physical	
items,	 designs,	 software,	 or	 data	 and	 information,	 to	 a	 foreign	
national	or	entity	either	within	or	outside	of	the	US.	The	EAR	are	
not	 exhaustive	 since	 they	 do	 not	 apply	 to	 all	 services	 and	
technologies;	e.g.,	defense	services	and	technologies	are	regulated	
by	 the	 US	 Department	 of	 State	 via	 regulations	 such	 as	 the	
International	Traffic	in	Arms	Regulations	(ITAR)	[212].		
Another	aspect	of	government	regulation	on	the	collection	and	

use	of	data	in	manufacturing	is	the	traceability	of	product	data	in	
highly-regulated	sectors	such	as	aerospace,	biomedical,	and	food	
and	drug	manufacturing	[77,	78,	108].	Regulations	exist	 in	these	
sectors	that	require	companies	to	keep	records	of	the	design	and	
manufacture	of	relevant	products,	 including	 information	such	as	
the	 specific	 tools	 and	 machines	 used	 for	 each	 manufacturing	
process	performed	on	the	product,	 the	time	when	these	process	
occurred,	and	the	operator	who	managed	the	process.	
Finally,	 government	 regulation	 is	 increasingly	 addressing	

privacy	concerns	when	collecting	and	using	data	of	any	kind.	For	
example,	 the	 European	 Union	 (EU)	 General	 Data	 Protection	
Regulation	(GDPR)	or	EU	Regulation	2016/679	was	implemented	
in	2018	to	protect	the	personal	data	of	all	citizens	in	the	EU	and	
European	Economic	Area	(EEA)	 [48].	These	 types	of	 regulations	
generally	require	the	disclosure	of	any	data	collection,	the	lawful	
reasons	for	data	collection,	the	length	of	time	that	collected	data	
are	to	be	retained,	and	the	means	by	which	collected	data	may	be	
shared	 with	 third	 parties.	 Such	 regulations	 may	 affect	 the	
collection	 and	 use	 of	 data	 in	 manufacturing	 if	 the	 data	 include	
information	 on	 customers	 or	 shop-floor	 personnel.	 In	 Table	 4,	
common	regulatory	considerations	and	their	potential	implication	
on	 manufacturers,	 with	 sample	 requiremnts,	 have	 been	
summarized.	
	
5.3.2.	Standards	
	
Beyond	 regulatory	 policies,	 many	 standards	 also	 exist	 to	

harmonize	 different	 IT	 security	 technologies.	 These	 standards	
have	 been	 released	 by	 different	 parties,	 including	 government	
agencies	 and	 consensus-based	 standards	 development	
organizations	(SDOs).	Some	examples	include:	
	

Table	4.	Regulatory	considerations	and	potential	implication	on	manufacturers.	
Regulatory	consideration	 Potential	implication	 Sample	requirement	

Export,	re-export,	or	transfer	of	
sensitive	technologies	

Limits	collection,	distribution,	and	use	of	data	and	
information	on	products	deemed	sensitive	for	economic	or	
security	reasons	

Export	Administration	Regulations	(US);	
International	Traffic	in	Arms	Regulations	
(US)	

Traceability	of	product	data	
Requires	long-term	data	collection	and	management	over	
the	lifecycle	of	products	in	sectors	such	as	aerospace,	
biomedical	and	food	

Federal	Aviation	Administration	(US);	
Food	and	Drug	Administration	(US)	

Privacy	of	personally	identifiable	
information	

Requires	disclosure,	management	and	protection	of	data	
and	information	on	customers	or	shop-floor	personel	 General	Data	Protection	Regulation	(EU)	
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• Federal	Information	Processing	Standards	(FIPS)	[156]:	
FIPS	 publications	 are	 released	 by	 the	 National	 Institute	 of	
Standards	and	Technology	(NIST)	when	required	by	statue	or	
when	 a	 compelling	 need	 exists	 within	 the	 US	 Federal	
Government	 (although	 they	may	 be	 used	 by	 private-sector	
organizations	 as	 desired).	 Two	 example	 FIPS	 publications	
relevant	 to	 encryption	 are	 FIPS	 197	 (Advanced	 Encryption	
Standard)	[153]	and	FIPS	140-2	(Security	Requirements	for	
Cryptographic	Modules)	[152].		

• NIST	Special	Publication	800-series	(NIST	SP	800)	[154]:	
NIST	 SP	 800	 provides	 a	 series	 of	 guidelines,	
recommendations,	 technical	 specifications,	 and	 annual	
reports	of	NIST’s	cybersecurity	activities.	As	with	FIPS,	NIST	
SP	 800	 publications	 are	 developed	 to	 address	 the	 security	
needs	of	the	US	Federal	Government,	but	they	may	be	used	by	
non-government	and	private-sector	organizations.		

• ISO/IEC	 27001:2013	 (Information	 technology	 –	 Security	
techniques	 –	 Information	 security	 management	 systems	 –	
Requirements)	[88]:	
	Published	 jointly	 by	 the	 International	 Organization	 for	
Standardization	 (ISO)	 and	 International	 Electrotechnical	
Commission	(IEC),	ISO/IEC	27001:2013	is	part	or	the	larger	
ISO/IEC	 27000	 family	 of	 standards	 focused	 on	 information	
security	management	systems.	It	provides	the	requirements	
for	 these	 types	 of	management	 systems,	which	 address	 the	
security	 of	 a	 variety	 of	 information,	 including	 financial	
information,	IP,	or	employee	and	customer	information.		

	
Standards	are	generally	voluntary	unless	mandated	by	statue.	

They	may	 be	 contractually	 or	 otherwise	 required,	which	would	
necessitate	compliance	by	a	manufacturer	who	entered	into	such	
a	 business	 transaction.	 Otherwise,	 standards	 provide	 guidance	
that	 manufacturers	 may	 leverage	 to	 ensure	 that	 they	 follow	
appropriate	security	requirements	and	best	practices. 	
	
5.3.3.	Frameworks	
	
Given	 the	 growing	 importance	 of	 data	 security,	 the	 variety	 of	

government	regulation	and	standards	on	the	topic,	and	the	large	
number	of	security	solutions	on	the	market,	it	can	be	an	enormous	
challenge	 for	manufacturers	 to	 determine	 the	 correct	 approach	
and	technologies	needed	for	their	specific	production	systems.	To	
address	 this	 need	 and	 provide	 tools	 and	 guidance,	 several	
framework	 approaches	 have	 been	 developed	 to	 educate	 the	
broader	community	adopting	data	security	practices.		
One	 early	 example	 is	 the	 Common	Weaknesses	 Enumeration	

(CWE)	 released	 by	 the	 MITRE	 Corporation	 [208].	 The	 CWE	
provides	a	formal	classification	of	weaknesses	and	security	flaws	
collected	 and	 documented	 from	 software	 as	 well	 as	 distilled	
“lessons	learned”	and	solutions	to	these	flaws.	Another	important	
framework	 is	 the	 Cybersecurity	 Framework	 published	 by	 NIST	
[155].	 The	 Cybersecurity	 Framework	 is	 voluntary	 and	 includes	
standards,	 guidelines,	 and	 best	 practices	 for	 managing	
cybersecurity-related	risks.	It	provides	a	way	for	organizations	to	
describe	their	current	security	posture	and	target	state	and	then	
assess	progress	towards	meeting	its	goals.		
Figure	35	describes	 the	NIST	Cybersecurity	 Framework	Core,	

which	 is	 composed	 of	 five	 essential	 functions	 and	 the	 different	
categories	of	topics	relevant	for	each	function.	Included	with	the	
Cybersecurity	 Framework	 is	 NISTIR	 8183A	 (Cybersecurity	
Framework	 Manufacturing	 Profile),	 which	 was	 developed	
specifically	 for	manufacturers	 to	 be	 able	 to	manage	 risk	within	
discrete-based	 productions	 systems	 [195].	 These	 tools	 enable	
manufacturers	to	develop	plans	and	practices	to	ensure	security	
when	using	big	data	for	smart	factories.	

	
	

Fig.	 35.	 Structure	 of	 the	 NIST	 Cybersecurity	 Framework	 Core,	 adapted	
from	[151]	
	
6.	Case	Studies	
 
The	 ultimate	 goal	 of	 big	 data	 analytics	 is	 to	 have	 various	

technologies	 developed	 for	 different	 stages	 of	 data	 lifecycle	
successfully	 translated	 into	 realization	 of	 smart	 factory.	 To	 this	
end,	three	industry	case	studies	are	presented	in	this	chapter.	
	
6.1	Applying	text-based	data	for	decision	making	
	
Textual	data	(e.g.,	written	logs)	are	one	type	of	collected	data	that	

often	 go	 unused	 in	 manufacturing.	 This	 is	 especially	 true	 for	
maintenance	 where	 data,	 especially	 historical	 data,	 are	 often	
collected	 through	maintenance	 work	 orders	 and	 service	 tickets	
[184].	While	the	data	can	be	rich	in	historical	knowledge,	they	can	
be	difficult	 to	analyze	because	 the	data	are	not	computable	 (see	
Section	2.3.2).	 Textual	 data	 in	manufacturing	 are	often	 informal	
and	 unstructured	 and	 contains	 technical	 jargon,	 abbreviations,	
and	misspellings	that	challenge	the	application	of	existing	natural	
language	 processing	 (NLP)	 techniques	 due	 to	 data	 variety	 and	
veracity.	These	issues	also	often	challenge	humans	who	attempt	to	
analyze	 the	 data	 to	 identify	 trends	 and	 best	 practices	 from	
previous	activities.	The	result	is	that	it	usually	takes	more	time	to	
diagnose	 a	 problem	 in	 a	 manufacturing	 system	 than	 it	 does	 to	
resolve	any	problem	that	is	found.	
Enabling	the	analysis	of	textual	data	in	manufacturing	requires	

formulating	consistent,	reusable	semantics	around	the	data	such	
that	the	data	are	structured	with	commonly	understood	meaning	
(i.e.,	 reduce	 variety	 and	 improve	 veracity).	 Often,	 this	 process	
involves	the	manual	application	of	“tags”	(or	annotations)	to	the	
data	based	on	input	from	a	domain	expert,	but	this	process	can	be	
time-consuming	 and	 costly	 [184].	 Sexton	 et	 al.	 presented	 an	
alternative	hybrid	approach	that	augments	NLP	techniques	with	
human	 guidance	 to	 decompose	 and	 tag	 the	 textual	 data	 in	
maintenance	work	orders	[184,	185]	(see	Fig.	36).		
This	 approach	 shifts	 the	 effort	 from	 manual	 tagging	 to	 the	

creation	 of	 a	 domain-specific	 dictionary	 that	 contains	 relevant	
terms	 and	 the	 knowledge	 that	 these	 terms	 represent.	 The	
dictionary	can	then	be	used	with	NLP	techniques	to	significantly	
reduce	 the	 time	 and	 effort	 needed	 to	 make	 textual	 data	
computable:	a	case	study	with	an	industry	partner	of	annotating	
3438	 raw	 text	 descriptions	 required	 over	 18	 hours	 manually	
versus	one	hour	when	applying	the	hybrid	approach.	Furthermore,	
the	 initial	use	of	 this	hybrid	approach	 can	greatly	 simply	 future	
data	collection	efforts	by	identifying	effective	data	tags	that	can	be	
incorporated	 into	 text-based	 documents,	 such	 as	 maintenance	
work	orders,	so	that	these	documents	already	contain	computable	
data	ready	for	analysis.	An	open-source	toolkit	–	Nestor	[159]	–	has	
been	developed	from	this	research	and	is	currently	being	studied	
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by	several	manufacturers,	 including	those	in	the	automotive	and	
aerospace	sectors.	
	

	
	

Fig.	36.	Flow	chart	of	hybrid	annotating	process	[184]	
	
6.2.	Defect	prevention-based	job	scheduling	
	
Current	 shop	 floor	 scheduling	 methods	 mainly	 focus	 on	 the	

availability	of	machining	resources	when	assessing	the	time	and	
cost	of	task	execution	instead	of	potential	defect	during	operation	
[141,	229].	However,	defects	in	machines	may	result	in	significant	
task	delay	and	production	 loss.	This	 case	 study	discusses	defect	
prevention-based	scheduling,	which	reassign	high-risk	tasks	based	
on	both	the	historical	database	and	data	collected	from	on-going	
production	operations	(see	Fig.	37)	[94].	
	
	

	
	

Fig.	37.	Fault	prediction	enabled	scheduling	[94]	
	
Data	associated	with	a	machining	task	may	involve	more	than	

40	 attributes,	 containing	 information	 on	 machine	 tools,	
workpieces,	 machining	 processes,	 operation	 time,	 results,	 and	
operators,	which	all	affect	the	production	[94].	To	cope	with	data	
complexity,	 a	 3-level	 data	 management	 structure	 has	 been	
developed	 to	 learn	defect-related	patterns	 from	 local	 data,	 local	
network	data,	and	cloud	data	(i.e.,	from	machine-level	to	system-
level).	 Local	 data	 analysis	 considers	 the	 patterns	 of	 a	 single	
machine	tool	and	local	network	data	analysis	considers	operation	
patterns	of	a	class	of	machine	tools.	Cloud	data	analysis	reveals	the	
pattern	at	the	shop	floor	level.		
The	established	 learned	pattern	 is	 then	used	to	compare	with	

data	from	an	incoming/on-going	task	to	evaluate	the	similarity	and	
risk	 probability,	 which	 provide	 the	 basis	 for	 task	 scheduling	 or	
rescheduling.	 A	 sample	 risk	 probability	 evaluation	 process	 is	
illustrated	in	Fig.	38,	which	shows	that	different	scheduling	of	task	
#1	 can	 lead	 to	 different	 risk	 probability,	 thereby	 providing		

guidance	 for	 final	 decision	making.	The	 algorithm	 is	 based	on	 a	
decision	tree	in	which	each	tree	bifurcation	represents	a	decision	
based	on	certain	numbers	of	data	attributes.	
	

	
	

Fig.	38.	Sample	risk	probability	evalutation	process	for	scheduling	based	
on	decision	tree,	adapted	from	[94]	
	
6.3.	Digital	twin	
	
The	digital	twin	is	an	emerging	concept	that	leverages	data	and	

information	 collected	 from	 a	 physical	 system	 to	 create	 a	 digital	
representation	of	that	system	that	may	be	used	to	generate	some	
desired	 control	 action	 (see	 Fig.	 39)	 [194].	 The	 growth	 of	 data	
collection	in	manufacturing	has	enabled	the	potential	use	of	digital	
twins	 for	 variety	 of	 situations,	 including	 optimization	 of	
production	 system	 performance,	 prediction	 of	 maintenance-
related	faults	and	failures,	and	virtual	verification	and	validation	
of	production	equipment.	In	this	way,	the	digital	twin	concept	can	
be	one	way	for	manufacturers	to	realize	the	following	four	key	use	
cases	for	big	data:	(1)	imaging,	(2)	prognosis,	(3)	maintenance,	and	
(4)	supply	chains	and	assembly.	
	

	
	

Fig.	39.	Schematic	a	digital	twin,	adapted	from	[75]	
	
One	recent	example	of	the	implementation	of	digital	twins	was	

the	 Operate,	 Orchestrate,	 and	 Originate	 (O3)	 Project	 funded	 by	
MXD	(formerly	 the	Digital	Manufacturing	and	Design	Innovation	
Institute	or	DMDII)	in	the	US	[38].	This	project	was	a	collaboration	
between	STEP	Tools,	 International	TechneGroup	 (ITI),	Mitutoyo	
America,	 and	 VIMANA.	 The	 goal	 of	 the	 effort	 was	 to	 enable	
automated,	 real-time	 conformance	 validation	 of	 manufacturing	
processes	 by	 analyzing	 data	 from	 design,	 production,	 and	
inspection	 [194].	A	prototype	digital	 twin	was	developed	by	 the	
project	 partners	 that	 combined	 several	 standards-based	 data	
pipelines,	including	ISO	10303-242	(Standard	for	the	Exchange	of	
Product	Model	Data	or	STEP	AP242)	from	design,	MTConnect	from	
manufacturing,	 and	 Quality	 Information	 Framework	 (QIF)	 from	
inspection	[68,	193].	Universally	unique	identifiers	(UUIDs)	were	
used	 to	 merge	 these	 data	 types	 and	 address	 the	 challenges	
presented	by	a	variety	of	data	types	[193].	Prototype	digital	twins	
created	through	the	O3	Project	(see	Fig.	40)	can	be	explored	online	
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and	 highlight	 two	 other	 significant	 challenges:	 (1)	 the	 need	 for	
potentially	large	data	volumes	to	support	sufficient	analysis,	and	
(2)	the	need	to	ensure	veracity	of	the	data	and	analysis	to	support	
effective	decision	making.	If	addressed	successfully,	the	resulting	
digital	twin	can	be	used	to	adjust	a	non-conforming	process.	
	

	
	

Fig.	40.	Example	of	a	visualization	created	from	a	digital	twin	that	can	be	
used	for	automate	conformance	validation	of	a	machining	process	[69]	

7.	Future	directions	

Manufacturing	 continues	 to	 evolve	 toward	 optimization,	 as	
companies	 are	 increasingly	 able	 to	 capture	 data	 from	 various	
aspects	 of	 manufacturing	 processes	 and	 transform	 them	 into	
actionable	 insights	 [113,	218].	However,	multiple	gaps	still	exist	
that	 should	 be	 addressed	 to	 ensure	 that	 big	 data	 analytics	 are	
successfully	 leveraged	 for	 value-addedness	 in	 realizing	 smart	
factories	 of	 the	 future.	 Seven	 topics	 related	 to	 big	 data	 are	
summarized	here	as	recommendations	for	future	research.	
	

7.1	Improving	data	quality	
	
To	maximize	 the	value	of	big	data,	methods	of	data	collection	

should	be	closely	aligned	and	correlated	with	domain	knowledge.	
Furthermore,	 there	 has	 been	 a	 growing	 realization	 that	
manufacturing	lacks	data	of	sufficient	quality	to	identify	and	model	
causality.	 To	 address	 these	 needs,	 efforts	 should	 be	 directed	 to	
leveraging	 methods	 such	 as	 linked	 data,	 graph	 theory,	 and	
category	theory,	to	connect	different	concepts	inherent	in	data	so	
that	 domain	 knowledge	 can	 inform	 and	 guide	 the	 data	 analysis	
process.	It	is	also	important	to	have	sufficient	semantics	to	ensure	
that	 the	 analysis	 of	 data	 provides	 value	 and	 can	 be	 reused	 for	
future	 analyses.	 Several	 techniques	 developed	 for	 data	
contextualization	and	 semantic	 indexing	have	been	discussed	 in	
Section	 2,	 but	 more	 research	 efforts	 are	 needed	 for	 the	
democratization	of	these	important	techniques.	
	

7.2	Scaling	data	collection		
	
Data	 collection	 in	manufacturing	 face	 two	 types	 of	 scalability	

challenges.	Compared	to	areas	where	techniques	exists	for	system	
scaling	 down,	 verification,	 validation,	 and	 conformance	 testing	
(e.g.,	wind	tunnels),	manufacturing	lacks	such	tools.	As	a	result,	it	
is	difficult	to	collect	meaningful	data	to	support	research	and	many	
outcomes	 are	 only	 tangential	 to	 the	 real	 need	 of	manufacturers	
[113].	Similarly,	data	collection	under	 large	scale	manufacturing	
(e.g.,	100s	or	more	machines)	has	not	truly	been	investigated,	and	
such	 large-scale	 deployment	 can	 potentially	 involve	 additional	
issues	 such	 as	 heterogeneity	 of	 machines	 and	 systems	 under	
various	 industrial	 standards.	 Therefore,	 future	 research	 on	
scalable	data	collection	is	urgently	needed	to	provide	meaningful	
guidance	to	manufactuers.	Furthermore,	research	efforts	on	data	
collection	 has	 been	 so	 far	 largely	 focused	 on	 machines	 and	

processes.	 Other	 aspects	 of	 manufacturing	 operations,	 such	 as	
assembly	 where	 data	 associated	 with	 fixturing,	 alignment,	 and	
tolerancing	 are	 generated,	 should	 also	 be	 considered	 to	 ensure	
scalability	in	data	collection	on	the	manufacturing	shop	floors.	
	

7.3	Quantifying	uncertainty	
	
Although	 various	 research	 efforts	 have	 been	 reported	 in	 data	

uncertainty	quantification	as	described	in	Section	3,	it	remains	an	
open	 and	 critical	 topic	 for	 data	 analysis,	 especially	 given	 the	
variety	 of	 data	 sources	 involved.	 Continued	 research	 on	
uncertainty	 quantification	 that	 enables	 scalable	 and	 systematic	
knowledge	 translation	 for	 incorporation	 into	 subsequent	 data	
analysis,	 such	 as	data	 learning,	 and	ultimately,	 decision	making,	
will	 be	 valuable	 and	 beneficial.	 Accordingly,	 more	 fundamental	
research	is	needed	to	develop	standards	and	tools	to	address	this	
need	and	advance	the	state	of	manufacturing.	
	
7.4	Leveraging	physics-guided	data	learning	
	
Despite	reported	success	of	data	learning	methods	such	as	DL,		

as	described	in	Section	4,	limitations	continue	to	remain,	including;	
(1)	the	“black-box”	nature	of	the	decision	logic	of	DL,	which	are	not	
transparently	 linked	 to	 mechanisms	 driving	 manufacturing	
phenomena,	and	(2)	their	critical	dependence	on	the	quality	of	the	
available	training	data	that	are	prone	to	spurious	relationships	not	
consistent	 with	 physics	 and	 therefore	 not	 generalizable.	
Conversely,	the	large	amount	of	physical	knowledge	accumulated	
in	 manufacturing	 has	 yet	 to	 be	 fully	 incorporated	 into	 data	
learning.	Taking	advantage	of	both	methods	will	be	beneficial	 to	
facilitating	innovation	that	is	more	robust	and	reliable	[171].	
	
7.5	Controlling	false	discovery	rate	
	
Data	learning	algorithms,	especially	DL,	facilitate	the	screening	

of	potentially	relevant	process	parameters	(i.e.,	input	variables)	by	
inductively	finding	their	correlations	to	the	quality	metrics	(output	
variables),	 which	 can	 be	 further	 tested	 to	 verify	 their	 causal	
influence.	However,	a	potential	problem	is	the	lack	of	methods	in	
data	 learning	 to	estimate	and	control	 false	discovery	rate	 (FDR)	
when	generating	correlations.	This	may	result	in	significant	waste	
of	effort	in	the	subsequent	confirmatory	study	if	the	FDR	is	high	
[10,	89].	Only	very	limited	work	has	been	reported	in	this	field	so	
far.	 One	 example	 is	 knockoff	 filter	 [10].	 The	 basic	 concept	 is	 to	
construct	 fake	 input	variables	designed	to	mimic	the	correlation	
structure	found	within	the	existing	data	in	a	way	to	allow	accurate	
FDR	control	[10].	Initial	tests	of	the	method	has	shown	promising	
results.	 These	 studies	 should	 motivate	 researchers	 in	
manufacturing	to	develop	more	efficient	and	reliable	procedures	
for	continued	process	improvement.	
	
7.6	Generalizing	analysis	methods	
	
Much	 of	 the	 efforts	 reported	 on	 big	 data	 analysis	 have	 been	

specific	solutions	rather	than	generalizable	models	and	methods		
that	can	be	broadly	deployed	across	the	industry.	This	means	that	
models	of	machine	performance	will	likely	be	re-trained	for	each	
different	type	of	machines,	even	if	the	models	are	identical,	due	to	
the	 individual	 characteristics	 of	machines	 and	 their	 operational		
history.	 Future	 research	 on	 generalizable	 big	 data	 analysis	
methods,	 such	 as	 transfer	 learning,	 will	 be	 beneficial	 for	
minimizing	initial	efforts	in	implementation	across	applications.		
	

7.7	Ensuring	trustworthiness	of	manufacturing	data	
	
While	increasing	attention	has	been	placed	on	new	technologies	

such	 as	 blockchain,	 there	 are	 a	 variety	 of	 potentially	 simpler	
solutions	 that	 should	 meet	 many	 manufacturing	 requirements,	
and	 research	 on	 these	 solutions	 should	 be	 of	 high	 relevance	 to	
avoid	unnecessary	cost	and	effort.	The	growth	of	semantics	in	data	
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analytics	 in	 manufacturing	 may	 also	 provide	 potential	
opportunities	to	leverage	big	data	for	data	security.	It	is	important	
for	 manufacturers	 to	 understand	 and	 explore	 the	 right	
combination	of	technologies	to	ensure	the	trustworthiness	of	the	
data	under	various	manufacturing	scenarios.	

8.	Conclusions	

It	has	been	envisioned	by	McKinsey	that	data	will	play	a	central	
role	 in	 smart	 manufacturing	 [138]	 with	 critical	 technologies	
involving	 (1)	 automated	 in-plant	 logistics,	 (2)	 data	 collection	
across	supply	chain,	 (3)	data-driven	predictive	maintenance,	 (4)	
automation	 and	 human-machine	 collaboration,	 (5)	 digitalized	
quality	 system	 and	 process	 control,	 (6)	 digital	 performance	
management,	 and	 (7)	 smart	 planning	 and	 agile	 operations.	 To	
facilitate	the	realization	of	smart	factories	of	the	future,	this	paper	
summarized	 the	 state-of-the-art	 of	 big	 data	 analytics	 from	 the	
perspective	of	the	lifecycle	of	manufacturing	data,	from	collection,	
transmission,	management,	 processing,	 to	 learning.	Within	 each	
stage,	 specific	 challenges	posed	by	 the	 volume,	 velocity,	 variety,	
and	veracity	of	data	are	highlighted,	and	respective	solutions	are	
synthesized.	In	addition,	the	issue	of	big	data	security	is	discussed	
from	the	perspective	of	both	technology	and	policy.	Three	industry	
case	studies	are	presented	to	demonstrate	the	value	added	by	big	
data.	 Recognizing	 significant	 interest	 from	 both	 academia	 and	
industry	on	data	and	the	many	fields	critical	for	realizing	the	full	
potential	of	big	data	that	have	yet	to	be	explored,	future	research	
directions	have	been	proposed	and	explained.	
The	 landscape	of	big	data	 is	 rapidly	expanding,	 and	new	data	

analytic	 methods	 are	 increasingly	 reported	 in	 the	 literature.	
Leveraging	 these	 new	 technologies	 to	 advance	 the	 state	 of	
understanding	of	manufacturing	processes	and	systems	will	allow	
manufacturers	to	benefit	from	the	rich	information	embedded	in	
the	 vast	 amount	 and	 type	 of	 data	 available	 in	 a	 sensor-rich	
environment.	 This	 area	 is	 quickly	 becoming	 a	 research	 topic	 of	
high	 relevance	 to	 manufacturing,	 and	 facilitates	 the	 digital	
transformation	towards	smart	factories	of	the	future.	

Disclaimer	

The	 identification	 of	 commercial	 systems	 does	 not	 imply	
recommendation	 or	 endorsement	 by	 NIST	 or	 that	 the	 products	
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